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Abstract. For a fully synchronous asymmetric exclusion process with open or closed
boundaries only partial analytic results are known owing to the appearance of strong-short range
correlations, which invalidate simple mean-field approximations. Here we present a new method
for calculating basic properties of nonequilibrium steady states, and calculate densities, fluxes,
travel times, spatial and temporal correlation functions, phase diagrams, profiles and widths of
boundary layers and interfaces between phases in coexistence, as well as their microstructures.

This paper is based on two new elements: (i) a microscopic characterization of order
parameters and local configurations in the relevant phases, based on the microdynamics of the
model, and (ii) an improved mean-field approximation, which neglects certain four-point—and
higher-order correlation functions. It isconjecturedthat the density profiles, obtained here, are
exact up to terms that are exponentially small in the system size.

1. Introduction

Nonequilibrium stationary states (NESS) violate detailed balance, they cannot be described
as Gibbs states, and their behaviour shows a wealth of interesting phenomena that are
absent in thermal equilibrium, such as boundary-induced phase transitions, self-organization,
pattern formation, and long-range spatial and temporal correlations. They occur in classical
fluids [1], driven diffusive systems [2–4], granular flows [5] and lattice gas cellular automata
(LGCA) with collision rules violating detailed balance [6], of which traffic models [7] are
simple examples. Unfortunately, a general theory similar to Gibbs statistical mechanics
is lacking for NESS, where results seem much less universal, and depend strongly upon
boundary conditions, driving forces, and the (sequential or synchronous) order in which the
microscopic dynamics is applied [8].

The standard theoretical approaches are based on Langevin equations, fluctuating hy-
drodynamics, mode coupling theories, and ring kinetic theory, which are phenomenological
and/or approximate in nature. A large amount of theoretical understanding has also been
obtained from computer simulations.

However, since 1992 new methods for obtaining exact solutions for simple open one-
dimensional systems, the so-called asymmetric exclusion processes, have been developed
based on transfer matrix methods (Bethe ansatz, matrix product ansatz [9–19]). One can
calculate bulk properties, phase diagrams, density profiles of boundary layers and interfaces
between coexisting bulk phases, as well as spatial and temporal correlation functions. The
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number of exact results is rapidly growing. For an up-to-date list of references to analytic
results for asymmetric exclusion processes we refer the reader to [8].

Asymmetric exclusion processes describe (open or closed) systems of interacting
particles or random walkers on a lattice, in most cases linear chains, with hard core exclusion
for double occupancy, and with hopping rates differing for different directions. The bulk
dynamics may be deterministic or stochastic. Open systems are coupled to reservoirs at
both ends through stochastic boundaries. Closed systems on a ring are coupled to local
randomness such as defect sites [15, 21] or defect particles [16–18]. Applications range
from shock waves in the Burgers equation, to traffic flow problems, reaction-diffusion
systems and growth models.

The problem can be formulated in terms of master equations with discrete or
continuous time [9], or in terms of the equivalent transfer matrices for spin chains [20],
or as microdynamic equations, as is usually done in LGCA, when used as models for
nonequilibrium fluids [23]. LGCA represent perhaps also a more faithful representation of
real traffic problems [7, 17]. The LGCA approach will be followed in this paper.

The dynamics of updating sites may be applied in (random) sequential order, typical
for the master equation description, or in parallel, i.e. fully synchronous for all sites, typical
for LGCA, or in any intermediate version with strictly sequential or with sublattice–parallel
updating [11, 13]. The different ways of updating are an essential part of the model.
They affect the existence of different phases in the phase diagram, as well as the structure
of the spatial and temporal correlations. For instance, the so-called maximum current
phase (see [9]) is present in the totally asymmetric exclusion process (TASEP) with open
boundaries, when updating is carried out in random sequential order [9, 10], but is absent
for other updating schemes [11, 13, 21, 22]. The spatial correlations are weakest for
random sequential updating, intermediate for sequential and sublattice–parallel updatings,
and strongest for parallel updating.

As far as analytic approaches are concerned many exact results concerning bulk
properties, spatial and temporal correlations, and profiles are known for random sequential
and sublattice–parallel updatings [7–9, 11]. The fully parallel updating schemes of LGCA
offer the largest difficulties, because the dynamics creates strong short-range correlations,
which invalidate simple mean-field approaches. Only some bulk properties such as density,
flux and the phase diagram have been obtained [8, 21, 22], where ‘in the bulk’ means
‘outside the boundary layers’.

The main aim of this paper is an analytic calculation of the basic average properties of
single particles, and their spatial and temporal correlations in the NESS. Moreover, we derive
the profiles and widths of boundary layers and of interfaces between phases in coexistence,
as conjectured in [22] for an open TASEP with parallel updating, where the particles move
forward (which is from left to right in our frame of reference) fully synchronously at
every timestep with probabilityp = 1 (deterministic bulk dynamics) if their right-nearest-
neighbour (r.n.n.) site is empty, and where input and removal rates specify the stochastic
boundary conditions. In [8] a much richer stochastic version of the same model withp < 1
has been considered, and mean-field results, based on a matrix multiplication ansatz, have
been obtained. It includes the deterministic TASEP, discussed in this paper, as a special
case. However, even with the highly sophisticated matrix multiplication ansatz, the profiles
and correlation functions have not yet been calculated as the associated matrix algebra is
quite complicated [8]. In the case of sequential or sublattice updating the model of [8]
has already been generalized to include backward jumps with probabilityq, and input and
removal rates at both ends of the chain [12].

Our approach starts in section 2 from themicrodynamic equations, which describe the
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time evolution of the set of occupation numbers{τi(t)} of the sitesi = 1, 2, . . . , L on
the chain at timet , as a discrete continuity equation, in which all variables are Boolean
variables, having only values 0 or 1

τi(t + 1)− τi(t) = ̂i−1(t)− ̂i (t). (1)

Here the instantaneous microscopic flux̂i (t) counts the number of particles passing through
link (i, i+1) at timet = 0, 1, 2, . . . . The influx̂0(t) and outflux̂L(t) specify the couplings
to the stochastic reservoirs or blockage sites. Further specification of the fluxes depends on
the model, and will be given later.

A detailed analysis of the microscopic evolution equation for sets of particle clusters
τiτi+1 . . . , derived in section 3, allows us not only to determine the short-range correlation
functions that are built up through the dynamics, but also to identify the different phases,
as well as the microscopic structure of boundary layers and the interface between different
bulk phases, without performing any averages. Averages such as bulk densities and flux,
as well as the phase diagram are calculated in section 4. The phase diagram shows a phase
transition from a free-flow regime(α < β), where all particles are moving at maximum
speed, to a congested or jammed regime(α > β), where the dynamics is controlled by
start–stop waves. Hereα is the input rate andβ the removal rate. When both rates are
equal, there are coexisting phases with a sharp interface (shock wave) between them. The
interpretation of the interface as a shock wave forms the direct link with Burgers nonlinear
diffusion equation [14].

In section 5 an exact hierarchy for particle-cluster correlation functions is derived, to
which we apply our improved mean-field approximation (MFA). It assumes for the low
density phase, thatinside the interfacebetween bulk phase and boundary layer, the higher-
order correlations between on the one hand a particle–hole pair, and on the other hand the
particle cluster on its r.n.n. site, can be neglected. This is equivalent to neglecting certain
four-point correlation functions. For the high-density phase, similar results are obtained
through particle–hole symmetry. The MFA reduces the hierarchy to a set of recursion
relations for the correlation functions and density profiles, which are solved in this section.
Knowledge of the density profile also enables us to calculate the average travel time of
particles. The results are new, and are in excellent agreement with extensive computer
simulations. The present MFA is similar in spirit, but not in specific details, to the improved
MFA of [7] that accounts for short-range two-point correlations, but neglects higher order
ones, and that leads to the solution of the TASEP on a ring without a blockage.

To test the validity of our MFA we have applied the method in the appendix to the same
open TASEP, but now with sublattice–parallel updating, for which the exact correlations
functions have been calculated in [11, 13]. It appears that the results agree with the exact
results, apart from terms that are exponentially small in the length of the chain. Moreover,
it turns out that spatial correlations arising from parallel updating are quite different from
those coming from sublattice–parallel updating.

In section 6 we exploit the analogy that a blockage site on a ring has with on the one
hand the entrance site and on the other hand with the exit site of the corresponding open
system. In this way we recover the results of [21] for the phase diagram, fluxes and the bulk
densities for the TASEP with a blockage on a ring with parallel updating. In addition we
are able to construct the higher-order correlation functions, density profiles and finite-size
corrections (rounding) of thej (ρ)-relation (‘equation of state’) at the high- and low-density
regimes of the coexisting phase region. Again, the results are new and in good agreement
with computer simulations. We end section 7 with some conclusions and suggestions.
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2. TASEP with synchronous dynamics

2.1. Definitions

We consider a totally asymmetric exclusion process with open boundaries as LGCA, with
particles living on a one-dimensional lattice with sites labelledi = {1, . . . , L}. The
configuration of particles at timet = 0, 1, 2, . . . is described by the set of occupation
numbers{τi(t)} with i = 1, 2, . . . , L, whereτi(t) ≡ 1− σi(t) = 1 if the sitei is occupied
by a particle, andτi(t) = 0 if the site is empty, i.e. is occupied by a hole (σi(t) = 1). The
dynamics is defined such that all particles, with anemptyr.n.n. site at timet , simultaneously
jump to that site at the next timestep (t + 1). If that site is occupied, the particle does not
move. So, the dynamics or updating in the bulk of the system is deterministic and fully
parallel.

Next, boundary conditionsare specified. We consider an open system, coupled to two
stochastic reservoirs, one that injects particles with a probabilityα (0 < α 6 1) into site
1, provided it is empty, and one that removes particles from siteL with probability β
(0< β 6 1) provided siteL is occupied.

Throughout this paper the configurations of the system at timet and t + 1 will be
denoted byτi = τi(t) and τ ′i = τi(t + 1). Then, according to the dynamic rules described
above, the configurationτ ′i is given by the microdynamic equationτ ′i = τi + ̂i−1− ̂i with
bulk and boundary fluxes given by†

̂i = τiσi+1 (i = 1, . . . , L− 1)

̂0 = τ0σ1 = α̂σ1

̂L = τLσL+1 = β̂τL.
(2)

Hereα̂ = τ0 andβ̂ = σL+1 represent a set of independent random Boolean variables, which
take the values{0, 1} with expectations〈α̂〉 = α and 〈β̂〉 = β, and which are drawn at
every timestep from a uniform distribution. For later analysis it is convenient to transform
the microdynamic equation (1), (2) to hole-occupation numbersσi = 1− τi , yielding

σ ′i = τiσi+1+ σi−1σi (i = 1, . . . , L). (3)

The equations for the time evolution of averages〈τi(t)〉 ≡ 〈τi〉t , correlation functions〈τiτk〉t
etc, can be derived by multiplying the equations in (1) for different sites and subsequently
averaging over arbitrary initial configurations{τi(0)}. In this way one obtains an open
hierarchy which couples the time changes of a correlations function to higher-order ones.

For large times (t → ∞) the system will approach a nonequilibrium stationary state,
which is the main focus of attention in this paper. Averages over the NESS are denoted
by 〈. . .〉. This state is expected to beunique, i.e. independent of the initial configuration
{τi(0)}. Therefore in analytical considerations the initial state is always taken to be the
emptystate{τi(0) = 0} for all i (i = 1, 2, . . . , L).

2.2. Symmetries

A quantity of paramount interest is the average flux〈̂i〉 through the link (i, i + 1),

〈̂i〉 = 〈τiσi+1〉 (4)

† In the model of [8] the boundary fluxes are the same, but the bulk flux is generalized tôi = p̂i τiσi+1, where
p̂i with 〈p̂i〉 = p represents a set of independent Boolean variables, similar toα̂ and β̂.
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and the local flow velocity or average speedvi = 〈̂i〉/〈τi〉. In the NESS these averages are
independent of time, and the average flux can be calculated from the continuity equation (1),
combined with (2) using the relation〈τ ′i 〉 = 〈τi〉. This yields a constant site-independent
flux j through the system,

〈̂i−1〉 = 〈̂i〉 = 〈τiσi+1〉 = j
〈̂0〉 = α(1− 〈τ1〉) = j
〈̂L〉 = β〈τL〉 = j

(5)

with i = 0, 1, . . . , L. The flux in the NESS is translationally invariant. Once the nearest-
neighbour correlations are known, the density profile can be calculated from (4) with
σi+1 = 1− τi+1, yielding

〈τi〉 = j + 〈τiτi+1〉. (6)

The equations of motion exhibit particle–hole symmetry, and theduality transformation,

τi ↔ σL−i+1 (i = 1, . . . , L)

τ0 = α̂ ↔ σL+1 = β̂
̂i ↔ ̂L−i

(7)

maps the microdynamic equation (1), (2) into the equivalent representation (3), i.e. the
microdynamic equation is invariant under particle–hole exchange. Consequently, the
average occupation numbers satisfy the symmetry relations

〈τi〉(α, β) = 〈σL−i+1〉(β, α)
= 1− 〈τL−i+1〉(β, α) (8)

with i = 1, 2, . . . , L. As the flux mapŝi ↔ ̂L−i under the duality transformation, the
average flux satisfies the symmetry relationji(α, β) = jL−i (β, α). However, the average
flux in the NESS is constant for all sites, hence

j (α, β) = j (β, α). (9)

The particle–hole symmetry is a very powerful tool, as all properties forα > β (high
density) can be obtained from those forα < β (low density).

3. Dynamics and structures

3.1. Build up of dynamic correlations.

In this section we show that a qualitative analysis of the dynamics and instantaneous
configurations—without performing any averaging—leads already to the complete phase
diagram, to an identification of the relevant order parameters, and to a qualitative
characterization of the structure of the high- and low-density phase, as well as to the typical
dynamics in the different phases.

In the following we will consider the dynamics ofclusters of particles and holes
described in terms of the Boolean variables,

Tkl = τkτk+1 . . . τl

Skl = σkσk+1 . . . σl
(10)
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with k < l, i.e. a cluster has at least two constituents. The time evolution equations for
these objects are obtained by multiplying (1) fromk to l, usingσjτj = 0. The result is

T ′kl = Tk,l+1+ τk−1σkTk+1,l+1

= (τk + τk−1σk)Tk+1,l+1

S ′kl = Sk−1,l + Sk−1,l−1τlσl+1

= Sk−1,l−1(σl + τlσl+1).

(11)

Multiplication of both equations in (11) then gives

(TknSn+1,l)
′ = (τk + τk−1σk)Tk+1,n+1Sn,l−1(σl + τlσl+1) = 0 (12)

where the relationτnσn = 0 has been used.
The implications of (12) are quite interesting, as it states that a configuration containing

(. . .1100. . .) cannotbe created. As all possible configurations have evolved from the empty
initial state, configurations containing a cluster of particlestailing a cluster of holes on its
r.n.n. site do not exist in the NESS.

Moreover, a configuration (. . .110100. . .) with a single particle–hole pair separating
the two clusters cannot be created either. The reason is that only the nonexistent
configuration (. . .?1100?. . .) in the previous timestep could have created the configuration
under consideration. The question mark represents a ‘0’ or a ‘1’.

Similarly a configuration (. . .11(01)k00. . .) with k (k = 1, 2, 3, . . .) intermediate hole–
particle pairs does not exist, as it could only have been created from the configuration
(. . .?1(10)k0?. . .) = (. . .?11(01)k−100?. . .). It then follows by complete induction that
none of the above configurations can exist in the NESS.

Consequently, the possible configurations generated by the dynamics from the empty
initial state do not contain any configurations with two or more empty sites to the right
of the left most cluster of particles. So, the fully parallel dynamics of the present TASEP
builds up very strong short-range correlations in the NESS.

From the observations about the build up of dynamic correlations, we arrive at some
important conclusions about the structure of the NESS. Letk0 label the position of the left-
most particle in the left-most particle cluster†. The configurations in the interval [1, k0− 1]
consist ofisolated particles, separated by an arbitrary number of holes. In these so-called
free-flow configurations

τi−1τi = 0 (i < k0) (13)

i.e. there is a ‘hard core repulsion’ between particles onnearest-neighboursites. The
instantaneous fraction of occupied sites (density) in this interval is thereforeρ(< k0) <

1
2.

The configurations in the interval [k0, L] consist ofisolatedholes, separated by an arbitrary
number of particles. In these so-calledjammedconfigurations

σi−1σi = 0 (i > k0) (14)

i.e. there is a ‘hard core repulsion’ between holes on nearest-neighbour sites. The
instantaneous fraction of occupied sites in this intervalρ(> k0) >

1
2.

Therefore,large systems with an overall density (fraction of occupied sites)ρ < 1
2

necessarily have only bulk configurations of the free-flow type with a narrowboundary
layer of jammed configurations near the exit site of (yet unknown) widthλR << L,
whereas forρ > 1

2 bulk sites contain only jammed configurations with a narrow boundary

† Note, however, that an instantaneous configuration of the whole system may not contain any cluster of particles
(at low densities) or any clusters of holes (at high densities).
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layer of free-flow configurations of widthλL near the entrance site. Which value ofρ
occurs, depends on the injection and removal rates,α and β, and will be determined in
section 4.1, whereaverageswill be considered.

3.2. Instantaneous profiles

To study the density profile we consider the creation of pairs and larger clusters from a
purely dynamical point of view. We first observe that the first particle pair can only be
createdat the exit site and only ifβ < 1. This follows from the evolution equation (11)
for Tk,k+1 which shows that the creation of a new pair at (k, k+1) requires the existence of
a pair at (k + 1, k + 2). Therefore, creation of thefirst pair TL−1,L at t + 1 is governed by

(τL−1τL)
′ = (τL−1+ τL−2σL−1)τL(1− β̂) (15)

where the termτL−1(t)τL(t) on the right-hand side of the equation vanishes, as this pair
has not yet been created. This implies that pairs cannot be created if〈β̂〉 = β = 1.
Consequently, ifβ = 1, there is no boundary layer near the exit, the density profile is
totally flat over the whole system and all configurations are pure free-flow configurations.
All space- and time-dependent correlations in this NESS can be calculated exactly in a
simple manner, as will be shown in section 5.2, where spatial and temporalcorrelations
will be studied.

If β < 1, however, particle clusters can be created near the exit site. In the case
in which the injection rate is smaller than the removal rate, the average interval between
arrivals 1/α at the pile-up region near the exit is larger than the average interval 1/β between
removals, and a large fraction of configurations are pure free-flow configurations without
any clusters near the exit site. On average there is only a narrow boundary layer of jammed
configurations. So, the bulk properties of the system in the low-density caseα < β are
determined by the injection rateα at the entrance site.

In the jammed phase (α > β ), there is on average a large backup starting near the
exit and extending to the left. The jammed configurations in the NESS cover the bulk of
the system, leaving only a narrow boundary layer with free-flow configurations near the
entrance. The bulk properties in the high-density phase are determined by the removal rate
β at the exit site. We also note that the phase diagram of the stochastic model of [8] contains
a line (1− α)(1− β) = 1− p, where the density profile isflat over the whole system.
In the present deterministic model(p = 1) this corresponds to the lineβ = 1 (free-flow
phase), and to the lineα = 1 (jammed phase).

4. Phase diagram

4.1. Free-flow and jammed phases

For large system sizeL (thermodynamic limit) andα < β the system is in the free-
flow phase, and the dynamics rigorously implies that the bulk of the system (except the
boundary layer near the exit) has onlyisolated particles. So, in the thermodynamic limit,
this low-density phase is characterized by an average density (occupation)ρ < 1

2 and has
the vanishing order parameters〈τiτi+1〉 = 〈τiτi+1τi+2〉 = · · · = 0 when i is a bulk site,
defined asi << L−λR with λR the width of the boundary layer near the exit. In fact, even
the microscopic order parameterτiτi+1 = 0 in the free-flow phase on the basis of (13). Of
course the correlations〈σiσi+1〉, 〈σiσi+1σi+2〉 etc, arenonvanishingin this phase.
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Moreover, the vanishing order parameter〈τiτi+1〉 = 0 for bulk sites, in combination
with relations (5) imply the following properties of the low-densityfree-flowphase:

j = 〈τ1〉 = 〈τ2〉 = · · · = 〈τi〉 = ρ
〈τ1〉 = j = ρ = α/(1+ α)
〈τL〉 = j/β = α/[β(1+ α)]

(16)

where thebulk density ρ is defined as the average occupation〈τi〉 at a bulk site i.
Because there is an excess density in the right boundary layer, the bulk densityρ =
〈N〉/L− |O(λR/L)| in the low-density phase, where〈N〉 =∑L

i=1〈τi〉.
Several interesting features can be seen. First of all, the bulk dynamics is completely

determined by the input rateα at the entrance site, as already explained in section 3.2.
Second, the flux equals the bulk density, indicating that particles are never blocked in the
free-flow phase, and are travelling with an average speedvF ≡ j/〈τi〉 = 1. A particle
entering the lattice is never blocked until it leaves the bulk and enters the boundary layer
near the exit, where it slows down to a velocityvJ = j/〈τL〉 = β with β < 1 as a
consequence of the pile up. The bulk density of the system,ρ = α/(1+ α), is always
smaller than1

2, sinceα < β 6 1. Therefore, we will also refer to the phase withα < β as
the low-density phaseof the system.

Similarly there is in the thermodynamic limit ajammed phase forα > β of high
densityρ > 1

2, containing only isolated holes except in a boundary layer of widthλL near
the entrance where there is a deficit density in comparison with the bulk density. The phase
is characterized by the microscopic order parameterσiσi+1 = 0, or equivalently by the
nonvanishing order parameters〈τiτi+1〉, 〈τiτi+1τi+2〉, etc, in the bulk.

The properties of the high-density phase withα > β can be related to those of the
low-density phase withα < β by the particle–hole symmetry of section 2.2. In this case,
particle–hole symmetry implies that the dynamics of particles moving forward is identical to
that of the holes moving backwards. In this point of view holes are injected at the exit site
with probability β and move downstream where they are finally removed from the lattice
with probabilityα. So, (16) implies for thejammedphase:

ρ = 〈τL〉(α, β) = 〈σ1〉(β, α)
= 1− 〈τ1〉(β, α) = 1/(1+ β)
〈τL〉 = 〈τL−1〉 = · · · = 〈τi〉 = ρ
〈τ1〉(α, β) = 1− 〈τL〉(β, α) = 1− β/[α(1+ β)]

(17)

wherei is a bulk site in the jammed phase, defined asi >> λL. Similarly the average flux
in the jammed phase follows from (9) as

j = jJ (α, β) = jF (β, α) = β

1+ β = βρ = 1− ρ (18)

which implies an average speedvJ ≡ j/ρ = β. In the boundary layer near the entrance a
particle has a higher average speed,v1 = j/〈τ1〉, and it slows down to speedβ, because
of frequent blockage by a preceding particle. The average flux may also be written as
j = 1− ρ, indicating that the flux in the jammed phase equals the density of holes, which
move with unit speed to the left. We note that these results are exact in the thermodynamic
limit as L→∞.

It is interesting to compare the results (16)–(18) for fully parallel updating with those for
sublattice–parallelupdating, as derived in (A5)–(A7) of the appendix. Let〈τ+〉 and 〈j+〉
be respectively the bulk density and the flux at even sites, as defined in the appendix, and
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〈j−〉 and〈τ−〉 the corresponding ones for odd sites, then we have for the sublattice–parallel
dynamics in thefree-flow phase(α < β),

〈τ+〉 = α 〈τ−〉 = 0 〈τL〉 = α/β
〈j+〉 = α 〈j−〉 = 0

(19)

and for thejammedphase(α > β)

〈τ+〉 = 1 〈τ−〉 = 1− β 〈τ1〉 = 1− β/α
〈j+〉 = β 〈j−〉 = 0.

(20)

The average properties, in particular of the odd sites, are very different from the TASEP
with fully synchronous dynamics.

Before concluding this section we discuss the collective dynamics in the different bulk
phases. In the low-density or free-flow phase every particle has at least one hole to its right.
Consequently it will advance one site per timestep, and has the maximum speedvF = 1.
In fact any free-flow configuration with a hole to its right is propagated as a whole with
velocity vF = 1. In the jammed phase on the other hand, every cluster ofc particles is
preceded by a single hole. At every timesteponly the lead particle of each cluster advances
one site, and becomes the tail particle of the preceding cluster. Therefore clusters of constant
length are moving backwards with unit speed, and so do isolated holes. Thecth particle
in a cluster makes its first move only afterc timesteps, and the average speed of a particle
vJ = β (see (18)). The motion in the jammed phase is therefore characterized bystart–stop
waves, which are typical for congested traffic flows.

4.2. Coexisting phases

From the analysis of the dynamics of section 3.2 we can also infer some properties for the
caseα = β. Then there exist on the left-hand side of the system free-flow configurations
(low-density phase) and on the right side jammed configurations (high-density phase). Each
of them occupies a finite fraction of the system. The twocoexisting phasesare separated
by an interface of microscopic width which contains only particle–hole pairs.

When α ↑ β, the bulk densityρ = α/(1+ α) in the free-flow (low density) phase
increases untill it reaches its valueρF = α/(1+ α) = β/(1+ β) at coexistence. At the
same time the right boundary layerλR grows to a region of macroscopic size, containing
the jammed phase. In the jammed (high-density) phase, the densityρ = 1/(1 + β) is
controlled by the release rateβ. As β ↓ α the bulk density also grows to its coexistence
valueρJ = 1/(1+ β) = 1/(1+ α).

In open systems at coexistence (α = β) the instantaneous positionR of the interface
wildly fluctuates, as it can be anywhere on the lattice with uniform probability. For a system
of L = 1000 sites this statement has been verified by collecting 1.2× 107 measured values
of R into 10 equal-sized bins. The resulting histogram is flat within fluctuations of 1%.

Consequently, forα = β the instantaneousoverall density,ρ̂ ≡ (1/L)∑i τi , fluctuates
betweenρF = α/(1+ α) andρJ = 1/(1+ α). For large systems (in the approximation of
zero interface width), the instantaneous density is given by

ρ̂ = ρ̂(R) = R

L

α

1+ α +
(

1− R
L

)
1

1+ α . (21)

The average densityρ = 〈ρ̂(R)〉 with R uniformly distributed over the system yields
〈R〉 = 1

2L andρ = 1
2, in agreement with theexact result to be derived in (49). Moreover,

we calculate the expected densityρ(x) at sitex, by averaging the instantaneous profile,
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ρ̂(x|R) = ρF θ(R − x) + ρJ θ(x − R), overR, whereθ(x) is the unit step function. This
yields thelinear density profile,

ρ(x) = 1

L

L∑
R=1

ρ̂(x|R) = ρF
(

1− x

L

)
+ ρJ x

L
. (22)

In theexact results of [11–13] for the TASEP with sublattice–parallel updating also a linear
form for the average density profile at coexistence has been found.

Of course, the instantaneous density profileρ̂ does not have a zero width as assumed in
(21), but a finite one, as will be discussed now by studying the dynamics of the interface.
To define the instantaneous locationR and the instantaneous widthw of the interface we
introduce its front and tail sitesl0 and j0. Let j0 be the position of the right-most hole in
the right-most cluster of holes, andl0 that of the left-most particle in the left-most cluster
of particles, wherej0 < l0 (see section 3.1). The sitesj0 and `0 belong with certainty
to the low- and high-density phase respectively. Then the interval (j0, `0 = j0 + 2n + 1)
contains onlyn alternating particle–hole pairs(10)n (n = 0, 1, 2, . . .), which are allowed in
both phases. The instantaneous position of the interface is defined asR = 1

2(j0 + l0) and
its instantaneouswidth asw(n) = 2n = l0− j0−1. As the particle (hole) cluster is moving
with unit speed forward (backward), the width decreases by 2 units per timestep, vanishing
after n times steps and yielding a hole cluster adjacent to the particle cluster. During this
periodR = 1

2(j0+ `0) remains fixed.
What happens next depends on the sizesh andc of the two adjacent hole and particle

clusters respectively. Ifh > c, the positionsj0 andl0 remain fixed during (h−2) timesteps.
After (h − 1) timesteps the cluster of particles disappears, andj0 moves one site forward,
whereasl0 makes a forwardjump to the right-most particle on the then right-most cluster.
If h < c, the same statements can be make withl0/c/particles/forward interchanged with
j0/h/holes/backwards respectively. Ifc = h both pointsj0 andl0 jump simultaneously. The
dynamics of the interface width is illustrated in figure 1.

The probability distribution of the sizes of the right and left jumps, as well as those
for the time intervals between the jumps, are determined by the probability distribution
of finding n particle–hole pairs between two particle clusters in the high-density region, or
between two hole clusters in the low-density region. The positionR of the interface performs
a random walk over all sites of the system around the average position〈R〉 = L/2. Once the
above probability has been calculated, its mean-square displacement(δR)2 = 〈(R−L/2)2〉
and the associated short time diffusion coefficientD can be calculated in principle for
time intervalsT satisfying the inequalityδR = √2DT � L/2. The long time diffusion
coefficients vanishes due to the presence of the boundaries. Here we only illustrate the basic
idea of the method by calculating the average width〈w〉 of the interface, using a mean-field
estimate.

The width〈w〉, measured over a long time interval, is shown in figure 2, as a function of
the injection rate. This behaviour can be understood on the basis of simple arguments. Let
the instantaneous interface configuration be (. . .?00(10)n11?. . .) with (n = 0, 1, 2, . . .), then
its width isw(n) = 2n. The probability on the configuration(00(10)n) tailing (11?. . .)—
which is the start of the jammed phase—isP(n) = (1− α)αn, whereαn is the probability
for injectingn particles and (1−α) the probability for not injecting a particle. In the present
asymmetric exclusion process, every injected particle is followed by a hole. The average
interface width is then

〈w〉 =
∑
n

2nP (n) = 2/(1− α). (23)

This estimate gives a good representation of the simulation results, as shown in figure 2.
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Figure 1. Instantaneous interface widthw between coexisting phases as a function of time,
measured forL = 1000, α = β = 0.9. Notice the saw-tooth behaviour of the width,
corresponding to right and/or left jumps of the interface boundaries.

Figure 2. Average interface width〈w〉 between coexisting phases, measured over an interval of
2× 104 timesteps, as a function of injection rateα, in a system withL = 1000, and compared
with the theoretical prediction〈w〉 = 2/(1− α). As α ↑ 1, the width of the interface changes
from microscopic to macroscopic.

4.3. Equation of statej (ρ)

The results of sections 4.1 and 4.2 allow us to construct the fluxj (ρ) as a function of the
bulk densityρ, as shown in figure 3. It is the analogue of the equation of state for the
pressure in thermal equilibrium.

In the low-density phase (ρ < ρF ), the densityρ = α/(1+ α) varies asα runs in the
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Figure 3. Flux j (ρ) as a function of densityρ (full curve). Forρ < ρF the flux isj = ρ, and
for ρ > ρJ it is j = 1−ρ. ForρF < ρ < ρJ with ρF = β/(1+β) andρJ = 1/(1+β) the flux
j = ρF remains constant. The triangle bounding the regionj < min{ρ, 1− ρ} of coexisting
phases is called the fundamental diagram in traffic flow problems.

interval (0, β) with β kept fixed, and the fluxj (ρ) = ρ increases to its coexistence value
ρF = β/(1+ β) asα ↑ β.

In the high-density region(ρJ < ρ < 1), the density,ρ = 1/(1+ β), can be varied by
keepingα fixed, and takingα < β < 1. The flux is given byj (ρ) = 1− ρ.

Let us compare the behaviour of fluxj and bulk densityρ when crossing the transition
line α = β, whereρ = α/(1+ α) andj = ρ in the low-density phase, andρ = 1/(1+ β)
and j = 1− ρ in the high-density phase. This shows that the fluxj is continuous across
the line α = β, whereas the density makes a jump4ρ = ρJ − ρF = (1− α)/(1+ α).
Therefore the NESS of this model shows a first-order phase transition across the lineα = β.
At coexistence(α = β), the flux remains constant and the instantaneous overall densityρ̂

fluctuates betweenρF andρJ .
The triangle bounding the region (j < minρ, 1− ρ) is called thefundamental diagram

in traffic problems, and corresponds to the coexistence region in thermodynamic phase
transitions.

It should be remarked that the basic formula (21) in this section for the instantaneous
density ρ̂(R) is simply the analytical representation of the conclusions of the dynamical
analysis of sections 3.1 and 3.2, which fixes the values of the coexisting densities. In
addition, there is ana posteriori justification of this formula through (23), which shows
that the width of theinstantaneousinterface is of microscopic size forα not close to 1.

The uniform distribution, postulated for the positionR of the interface, is only an
observation deduced from computer simulations. Consequently, the average linear profile
in (22) is a phenomenological result.
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5. Correlation functions

5.1. Profiles and nearest-neighbour correlations

Consider first the low-density or free-flow phase whereα < β. To determine the density
profile 〈τk〉 from (6) we need the nearest-neighbour correlation function〈τkτk+1〉, which
represents the probability of finding the sites(k, k + 1) occupied. As already derived in
section 4.1, we have〈τk〉 = ρ and 〈τkτk+1〉 = 0 for bulk sites(k � L − λR). It remains
to calculate these quantities in the boundary layerk & L− λR near the exit. To do so, we
need the dynamics (11) of the cluster correlation functions (10), averaged over the NESS,
where〈T ′〉 = 〈T 〉. This yields

〈Tk`〉 = 〈Tk,`+1〉 + 〈τk−1σkTk+1,`+1〉 (24)

where` = k+ 1, . . . , L and we recall thatτL+1 = 1− β̂. If Tk+1,`+1 refers to the left-most
particle cluster, then the sites(k − 1, k) belong by definition to the boundary layer, and
the probability of the configurationτk−1σkTk+1,`+1 equalsα times the probability for the
configurationTk+1,`+1. Sincek+1 is by definition the left-most site on the left-most particle
cluster, the occupation numberσk equals unity with probability 1. In fact there are only
very few particle clusters in the pile-up region near the exit site, as the average removal
interval 1/β is less than the average arrival interval 1/α at the pile-up region. So, we expect
that the least advanced particle cluster gives the dominant contribution to the probabilities,
and we make themean-field assumptionthat the above factorization holds for all further
advanced particle clusters as well, i.e.

〈Tkl〉 = 〈Tk,l+1〉 + α〈Tk+1,l+1〉. (25)

The present MFA therefore assumes that four-point correlations and higher-order ones
between a particle–hole pair and the particle cluster just on its r.n.n. site (which by definition
belong to the boundary layer in the present model) are negligible in the low-density phase.

The recursion relation above can be solved starting froml = L, where 〈Tk,L+1〉 =
〈 TkL〉(1− β), and yields after iteration

〈TkL〉 = α(1− β)
β

〈Tk+1,L〉 =
(
α(1− β)

β

)L−k
〈τL〉 (26)

where we have used the relation〈TL,L〉 = 〈τL〉. Taking ` = L − 1, L − 2, etc gives
〈Tk,L−1〉 = (α/β)〈Tk+1,2〉, etc and one finds by complete induction

〈Tk,L−`〉 =
(
α

β

)l
〈Tk+l,L〉. (27)

Combining this with (26) yields

〈Tk`〉 = 〈τkτk+1 . . . τl〉 =
(
α

β

)L−k
(1− β)l−k〈τL〉. (28)

The density profile is then obtained by inserting (28) forl = k + 1 in (6) with the result

〈τk〉 = j
{

1+ 1− β
β

(
α

β

)L−k}
(29)

where〈τL〉 = j/β = α/[β(1+ α)] has been used. By taking the thermodynamic limit of
(28) and (29) one recovers the properties of sections 3 and 4 for the bulk phase, i.e. the order
parameters〈τkτk+1〉 = 〈τkτk+1τk+2, . . .〉 are vanishing, and the bulk density isρ = 〈τk〉 = j .
In addition (29) describes the profile of theboundary layernear the exit. The excess density,
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which equals the nearest-neighbour correlation〈τkτk+1〉, decreases exponentially on a length
scale 1/ ln(β/α), independentof the system size.

Our mean-field assumption, formulated first above (25), also implies that sitek in Tkl
marks the beginning of the boundary layer. Hence, the probabilityP(k) that the width of
the boundary layer isL − k, is thenproportional to the excess density〈τi〉 − j in (29),
yielding after proper normalization,

P(k) = ζL−k/(1− ζ ) (30)

with

ζ = α/β. (31)

The expected width of the boundary layer in the low-density phase is then,

λB = 〈L− k〉 = ζ

1− ζ =
α

β − α (32)

and the fluctuationδλB around this average is

(δλB)
2 = 〈(L− k)2〉 − 〈L− k〉2 = ζ

(1− ζ )2 =
αβ

(β − α)2 . (33)

The width of the boundary layer is ‘microscopic’ in nature, i.e. independent of the system
size. In the limiting case asα ↑ β (coexisting phases) the widthλB diverges and becomes
of macroscopic size. It is given byL− R, as the locationR hops around over all sites of
the lattice.

The correlation functions in the high-density or jammed phase withα > β can be
obtained from particle–hole symmetry, for example〈τkτk+1〉(α, β) = 〈σL−kσL−k+1〉(β, α)
and yields

〈τkτk+1〉 = 1− β
1+ β −

1− α
1+ β

(
β

α

)i
. (34)

Similarly, the density profile follows from (34) and (6) as

〈τk〉 = 1

1+ β

[
1− (1− α)

(
β

α

)k]
. (35)

It shows a boundary layer near the entrance site with a deficit density that decays on a
length scale 1/ ln(α/β).

For the coexisting phase region, whereα = β, the boundary layers at both ends diverge,
i.e. become of macroscopic size, and the typical widthξ of the interfaceξ = 〈w〉 =
2/(1 − α), or equivalently∼ 1/| lnα|, as was calculated in section 4 on the basis of
dynamical considerations.

In figure 4(a) the density profiles are compared with computer simulations, for two
different combinations of parameter sets{α = 0.50;β = 1} and {α = 0.50;β = 0.51}
and the results areindistinguishable. For β = 1 the profile is flat, as already explained in
the first paragraph of section 3.2. Moreover we have compared simulations and theoretical
predictions for the three- and four-point correlation functions〈τkτk+1τk+2 . . .〉 for α = 0.50
and β = 0.55. The former ones are shown in figure 4(b), and the results are again
indistinguishable.

In the appendix the density profile and correlation functions for the same TASEP with
sublattice–parallel updating [11] have been calculated, using the same mean-field theory.
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Figure 4. (a) Density profiles for{α = 0.50;β = 1} (full curve) and{α = 0.50;β = 0.51}
(broken curve) for a system withL = 1000. The bulk densities are the same (see (16)), except
in the boundary layer, where the excess density is〈τiτi+1〉, averaged over 1.3× 107 timesteps.
(b) the three-point correlation〈τiτi+1τi+2〉. In both plots the theoretical (broken curve) and
simulation results (diamonds) are indistinguishable. The latter are time averaged over 1.8×104

timesteps.

Here the average flux is quite different, i.e.j = β〈τL〉 = α, but the profile〈τk〉/j is quite
similar, i.e.

〈τk〉 = j
{
δk,even+ 1− β

β

(
α

β

)L−k}
(36)
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at least for even sites. For comparison we also quote the results for the correlation functions,
as derived in (A11) of the appendix, i.e.

〈Tkl〉 = 〈Tk,l−1〉 = α

β
〈Tk+1,l〉 = α

β
〈Tk+1,l−1〉

=
(
α

β

)L−k
(1− β) 1

2 (l−k)〈τL〉 (37)

which should be compared with (28). We emphasize thatk, l andL are evennumbers in
the present formulae. Comparison with (28) shows that the correlation functions are quite
different, in particular the differences betweeneven and odd sites. The results (36) and
(37) areexact to terms of order(α/β)L, as can be verified by comparison with the exact
results derived in [11, 13].

We conjecturethat the corresponding results (26)–(35) for the same TASEP with fully
parallel updating and with open boundaries are also exact, up to exponential terms of
order (α/β)L for α < β, and up to(β/α)L for α > β. However, forα close toβ, say
α = β(1− δ/L), the expressions for the profiles in the boundary layers break down, as the
neglected terms(α/β)L ' exp(−δ) become ofO(1) for largeL.

5.2. Spatial and Temporal Correlations

Next we will determine the correlation functions〈τiτi+x〉 for bulk sites in the low-density
phase(α < β 6 1). As explained in section 4.1 the dynamics rigorously implies that
the ‘microscopic’ order parameterτiτi+1 = 0 in the bulk phase. Consequently, the
microdynamic equation for all sites outside the pile-up region near the exit becomes

τ ′1 = τ0σ1 = α̂(1− τ1)

τ ′i = τi−1 (1< i � L− λR). (38)

The last relation impliestranslational invarianceof the correlation for the bulk phase, i.e.

〈τiτi+x〉 = 〈τi−1τi+x−1〉 = · · ·
= 〈τ1τ1+x〉 = α〈τx〉 − α〈τ1τx〉. (39)

The last equality follows from (38) forτ1. Then (39) implies that the pair distribution
function, defined asg(x) = 〈τ1τ1+x〉/〈τ1+x〉, satisfies the recursion relation

g(x + 1) = α − αg(x). (40)

We calculate the generating function,F(x) ≡∑∞x=0 z
xg(x) whereg(0) = 1, by multiplying

(40) with zx+1 and summing overx. Solving this equation then yields

F(z) = 1− z(1− α)
(1+ αz)(1− z) . (41)

After decomposing the right-hand side of (41) into partial fractions, and expanding the result
in powers ofz, we find the pair correlation function in the bulk of the low-density phase:

g(x) = [α + (−α)x ]/(1− α) (42)

which yields

〈τiτi+x〉 ≡ 〈τi〉〈τi+x〉[1+ C(x)]
= 〈τ1〉2[1− (−α)x−1]. (43)

This is an asymptotically exact result for 16 {i, i + x} � L − λR. In the case in which
β = 1 there is no right boundary layer, and (43) is exact for all interparticle distances
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x. The pair function oscillates around its uncorrelated value, it vanishes forR = 1, as it
should, and is independent ofβ, because the bulk phase is only determined by the injection
rate α. Neighbour particles are strongly correlated. The spatial correlation function in
the bulkC(x) = −(−α)x−1 decays exponentially with a correlation lengthξF = 1/| lnα|.
This correlation length becomes of macroscopic size asα → 1 and β = 1, where the
system approaches the critical maximal current phase [9], which in the present model is
only realized at the parameter valuesα = β = 1.

The result (43) for the bulk correlations is very different from those in [11, 13] for
sublattice–parallel dynamics, where the spatial correlations do not depend on the interparticle
distancex. For instance, in that model one has in thebulk of the low-density phase

〈τiτi+x〉 =
{
〈τ1〉2(1+ α) (i, x even)

0 (elsewhere).
(44)

So far we have discussed spatial correlation functions for bulk sites of the NESS. Similar
results can be obtained fortime-andspace-dependent correlation functions. It follows from
the microdynamic equation (38) that in the low-density phase

τi+x(t) = τi+x−1(t − 1) = · · · = τi+x−t (0) (45)

and consequently we have the asymptotically exact result,

〈τi+x(t)τi(0)〉 = 〈τi+x−t τi〉
= 〈τ1〉2{1− (−α)x−t−1} (46)

valid for 06 {i, j} � L − λR with j = i + x − t andx 6= t . For the special caseβ = 1
the result (46) is exact for all sites and for all times.

One may also consider correlation functions involving fluxes. In thelow-densityphase
(α < β) we have

〈τi+x(t)τi(0)〉 = 〈̂i+x(t)τi(0)〉 = 〈̂i+x(t)̂i(0)〉 (47)

because the macroscopic order parameterτiτi+1 = 0. The result obtained for the low-density
phase can be easily extended to thehigh-densityphase using particle–hole symmetry and
the relation̂ = σi+1 on account of (3) and (14). This yields for bulk sites

〈τiτi+x〉(α, β) = 〈1− τL−1+1− τL−x−i+1− τL−i+1τL−x−i+1〉(β, α)
= 1

(1+ β)2 {1− (−β)
x+1} = 〈τi〉2{1− (−β)x+1}

〈τi ̂i+x〉(α, β) = 〈τiσi+x+1〉(α, β)
= 〈τL−x−i (1− τL−i+1)〉(β, α)
= j〈τi〉{1− (−β)x+1}

〈̂i ̂i+x〉(α, β) = 〈σi+1σi+x+1〉 = j2{1− (−β)x−1}.

(48)

For the coexistenceregion (α = β) extensive measurements were made. It appears that
the properties such as density, flux, etc, for both regions are equal to the properties in their
associated phases. It seems interesting to measure the correlations between sitei in the low-
density region and sitei+x in the high-density region. However, due to the random nature
of the interface location, the occupation numbersτi and τi+x appear to be uncorrelated,
even if x 6 1/| lnα|.
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Figure 5. Density profiles in the coexistence region, time averaged over 4000 timesteps. At
time t1/t2 the interface is atR is 302/649, and the average number of particles〈N〉 is 566/450
respectively.

5.3. Profile on coexistence line

In section 3 the profile and interface between low- and high-density phase(α = β) has
been studied on the basis of purely dynamical considerations. A few additional results can
be obtained from particle–hole symmetry (7) and the constant flux relation (5).

On the transition lineα = β, it follows from (8) that〈τi〉 = 1− 〈τL−i+1〉. The density
in the middle of the lattice is therefore on average1

2. The average number of particles〈N〉
on the lattice follows by summing the above relation over all sites, and yields

〈N〉 =
L∑
i=1

〈τi〉 = 1
2L. (49)

The flux j = α/(1+ α), which is continuous across the transition line (see section 3.1),
allows us to calculate the boundary values exactly

〈τ1〉 = α/(1+ α) 〈τL〉 = 1/(1+ α)
〈τ1τ2〉 = 0 〈σLσL−1〉 = 0.

(50)

There are two coexisting phases, downstream of the interface the low-density phase with
ρF = α/(1+ α) and upstream the high-density phase withρJ = 1/(1+ α), separated by
an interface located atR. This interface hops around over the whole lattice, where two
instantaneous profiles (att1 and t2) are shown in figure 5 forα = β = 0.50.

5.4. Travel times

This section studies the travel time of the particles, which is by definition the number of
timesteps that have passed from the moment a particle enters the lattice until it leaves the
lattice. Because particles cannot travel with a speed larger than unity, the actual travel time
will always be larger than or equal to the size of the latticeT > L. For the average travel
time, the following definition is used:

〈T 〉 =
L∑
i=1

〈τi〉/j = 〈N〉/j (51)
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where〈N〉 denotes the average number of particles on the lattice. The resulting expression
implies that the flux is equal to the average (unknown) number of particles〈N〉 divided by
the average travel time〈T 〉.

The present sections will give analytical and simulation results for travel times in low-
and high-density phases, as well as travel times in the coexistence region. In thelow-density
phaseof a large system(L→∞), the speed in the bulk equals unity. Therefore we expect
the average travel time to be approximately equal to the size of the lattice,〈T 〉 ' L. It can
be calculated directly from (51) and the density profile in (29) and yields in the low-density
phase(α < β),

〈T 〉 = L+ 1− β
β − α

[
1−

(
α

β

)L]

= L+ 1− β
β − α (L→∞). (52)

We observe that, forα andβ not to close to one another, the travel times are of the order of
L, as expected. Moreover, the average travel time〈T 〉 is a function of both parametersα
andβ. As α ↑ β, the neglected correction terms(α/β)L in (52) and (29) become ofO(1),
and (52) is no longer valid.

For a large range of combinations ofα and β, the average travel times have been
measured with the simulation program, which is able to measure the travel times of a
variable set of individual (labelled) particles. The measured travel times are in excellent
agreement with relation (52), even very close to the transition line(α = β). In figure 6(a)
we show a histogram of travel times in a system withL = 1000,α = 0.50,β = 0.51 in the
low-density phase near the transition lineα = β, where travel times may vary considerably.
The average travel time for the specific measurement was 1049 timesteps. Expression (52)
gives〈T 〉 = 1049, so the agreement is very good.

In the high-density phase(α > β) the average travel time should be approximately
L/β, because the speed in the bulk of the system is equal tovJ = β. The average travel
time 〈T 〉 can again be determined from definition (51) and (35) with the result

〈T 〉 = L

β
− 1− α
α − β (L→∞). (53)

For α = 1 the average travel time assumes the valueL/β. For α < 1, the average travel
time is smaller thanL/β, because then the particles travel with a velocity larger thanβ

just after entering the lattice. Comparison with the results of the low-density phase also
show that the statistical spread in travel times is larger in the high-density phase, because
the particles are often blocked by other particles. Figure 6(b) shows a histogram of the
measured travel times for a lattice ofL = 1000 sites, and injection and removal rates of
α = 0.51 andβ = 0.50 respectively with a predicted average〈T 〉 = 1951. Obviously there
is a large spread around the average travel time (52). The distribution is not symmetric and
therefore not a Gaussian. The asymmetry of the distributions in figures 6(a) and (b) are
related through particle–hole symmetry.

The average travel time〈T 〉 on the transition lineα = β can be easily determined,
using the average number of particles in (51). The travel time combined with the flux
j = α/(1+ α) then yields

〈T 〉 = 〈N〉/j = 1

2
L

(
1+ 1

α

)
. (54)

This equation merely shows that in the coexistence region, the average travel time is just
the average of the low- and high-density travel times, because both phases are present and
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Figure 6. (a) Histogram of travel times for a system ofL = 1000 in the low-density phase
with {α = 0.50;β = 0.51} and (b) in the high-density phase with{α = 0.51;β = 0.50}.

occupy on average an equal fraction of the system. The long-time average〈T 〉 agrees very
well with (54). Individual particles will have a considerably shorter travel time of orderL

whenR is located near the exit site, and a longer one of orderL/α whenR is located near
the entrance site.

The prediction (54) is in excellent agreement with the simulation results, as shown in
figure 7. We also note that the theoretical description of our totally asymmetric exclusion
process in terms of occupation numbers (indistinguishable particles) does not allow us
to calculate travel times of labelled particles, or calculate the probability distributions in
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Figure 7. Average travel time〈T 〉 as a function ofα = β for coexisting phases in a system
with L = 1000 sites.

figure 6. Such calculations would only be possible in a TASEP with labelled particles, as
considered in [17, 19].

6. TASEP on a ring with blockage site

The fully synchronous TASEP of section 2.1 as a closed system withN = ρL particles and
obeying periodic boundary conditions is a fully deterministic, rather uninteresting system
in its NESS. Forρ < 1

2 all sites are in pure free-flow configurations and particles travel,
say, counterclockwise with unit speed and fluxj = ρ. For ρ > 1

2 all sites are in jammed
configurations, and holes are travelling clockwise with unit speed, and the fluxj = 1− ρ.

The dynamics becomes more interesting by inserting a stochastic blockage at sitei = L
with a transmission rateβ < 1. The microdynamic equation for sitesi = 2, 3, . . . , L − 1
is the same as in (1), (2), but the fluxes referring to the blockage sites are

̂0 = ̂L = β̂τLσ1 (55)

where the Boolean variablêβ with expectation〈β̂〉 = β, is defined in a similar manner
as α̂ and β̂ below (2). Forβ = 1 one recovers the fully deterministic case with periodic
boundary conditions.

First we observe that the dynamics atfixedβ is invariant under the duality transformation

τi ↔ σL−i+1

ρ ↔ 1− ρ (56)

and that the average occupation satisfies

〈τi〉(ρ, β) = 〈σL−i+1〉(1− ρ, β). (57)

A mean-field theory for the bulk properties of this model in the thermodynamic limit has
already been given by Yukawaet al [21], as well as extensive numerical simulations,
specially for the coexisting phase region. However, the correlation functions and density
profiles have not yet been studied analytically. In the appendix we have discussed the TASEP
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with open boundaries and sublattice–parallel updating. The corresponding models on a
ring with a single blockage site and sublattice–parallel updating or with random sequential
updating have also been solved exactly in [14–18]. However, the analytic results show little
similarity with those for the present model, and will not be discussed further.

The build-up of dynamic correlations and structures may be analysed in a similar way
as in section 3 for open systems, and one recovers (15),exceptfor site i = L. This implies
that a cluster of holes upstream of a particle cluster can only be created at the blockage
site. Of course, hole clusters upstream of particle clusters may be present in the initial state
anywhere on the lattice. In the low-density phase, such configurations will be destroyed in
a time that is roughly equal to twice the size of the largest hole cluster. Moreover, from a
detailed analysis of the dynamics, similar to section 3.1, one can derive exact relations for
the microscopic dynamic correlations for the bulk of the low-density phase, such as

τiτi+1 = 0 (bulksitesi � L− λB)
τLτ1 = 0 (blockage site)

(58)

whereλB is the width of the pile-up region, downstream of the blockage.
The continuity equation (1) and (55) yields then in combination with (58) for the low-

density phase in the NESS,

j = β〈τL〉 = 〈τ1〉 = 〈τ2〉 = · · · = 〈τi〉 (i � L− λB)
= 〈τi〉 − 〈τiτi+1〉 (L− λB . i < L). (59)

In the low-density phase there is an excess density in the pile-up region. Consequently, as the
total densityρ = N/L is fixed, the density at bulk sites has the form〈τ1〉 ' ρ{1−O(λB/L)},
as we shall see later.

In fact, one can infer most of the results for the ring model with a blockage from
section 4, by considering the fluxj = β〈τL〉 across the link(L, 1) as the influxj0 appearing
in (5) for the open system. This relation defines the effective input rateαe through the
relationj = αe(1− 〈τ1〉) and yields in combination withj = 〈τ1〉 in (59),

αe = j/(1− j) (60)

whereαe approachesρ/(1−ρ) in the thermodynamic limit. The flux across the link(L, 1)
can equally be considered as the outflux〈̂L〉 = βe〈τL〉 in (5) of the corresponding open
system. This identifies the effective removal rateβe = β as the transmission coefficient of
the blockage siteL.

The phase diagram for the system with a blockage can then be read off from figure 3,
showing the fluxj (ρ) of the open system at a fixed removal rateβ. Consequently, for
αe < βe, or equivalently forj < β/(1+ β) (wherej ∼ ρ for large systems), the system
is in the low-density or free-flow phase. If the densityρ approachesρF = β/(1+ β), or
if αe approachesβ, then the system enters the region of coexisting phases, and the pile-
up region, which had before a microscopic widthλB of approximate size 1/ ln(βe/αe) =
1/ ln[β(1− ρ)/ρ], grows to macroscopic size, as in a wetting transition. Forρ > ρF an
interface appears downstream of the blockage, at a locationR, and the pile-up region has
the macroscopic sizeL − R. As the densityρ increases further toρJ = 1/(1+ β), the
locationR moves further downstream, according to (see (21))

ρ =
(
R

L

)
β

1+ β +
(

1− R
L

)
1

1+ β (ρF < ρ < ρJ ). (61)

As ρ ↑ ρJ , the free-flow phase disappears(R → 0), and the system goes into a pure
jammed phase, where there is again a microscopic boundary layer, just upstream of the
blockage with a deficit density.
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In summary, the TASEP on a ring with a blockage site has the following phases,
—free-flow phase:ρ < ρF = β/(1+ β)
—coexisting phases:ρF < ρ < ρJ
—jammed phase:ρ > ρJ = 1/(1+ β).
The above results were first obtained and verified against computer simulations by

Yukawaet al [21].
The density profile〈τi〉 in the free-flow phase can be inferred from the corresponding

profile (29) forαe < βe, and yields,

〈τi〉 = j
{

1+ 1− β
β

ζL−i
}

(i < L)

< τL >= j/β
(62)

where terms ofO(ζL) have been neglected. The relation above is valid for

ζ ≡ αe

βe
= j

β(1− j) < 1 or j < ρF . (63)

In fact, the first line in (62) also covers the casei = L. The relation between fluxj (ρ) = 〈τ1〉
and densityρ in the free-flow phase follows by summing (62),

ρ = 1

L

L∑
i=1

〈τi〉 = j
{

1+ 1

L

(1− β)(1− j)
[β − j (1+ β)]

}
(64)

whereO(ζL)-terms have been neglected. The fluxj (ρ) can be solved from this quadratic
equation, where the root with the minus sign is the physical root. For large systemsj differs
only slightly from ρ. However, theO(1/L)-correction becomes more and more important
asj ↑ ρF = β/(1+β) where the denominator in (64) diverges. By a perturbation expansion
to O(1/L) we find,

j (ρ) =


ρ

[
1−

(
1− ρ
ρF − ρ

)
ε

]
(ρ < ρF )

ρF

[
1−

(
1

ρ − ρF

)
ε

]
(ρF < ρ < 1

2)

(65)

with

ε =
(

1− β
1+ β

)
1

L
≡ 1ρ

L
(66)

where1ρ = ρJ − ρF is the difference in density between the two coexisting phases. The
numerical solution of (64) is plotted in figure 8 as the solid line.

We have again performed computer simulations on large and small systems to test
the density dependence of the fluxj (ρ). After preparing the system in a random initial
configuration, we let the system relax for 4× 104 timestep, after which it is assumed to
be in the NESS. We have calculated time averages over 3× 105 timesteps, and ensemble
averages over 50 different initializations. The agreement in the intervalρ < ρF between
theory and simulations is excellent, even for smallL andβ, and forρ close toρF where
the difference betweenj andρ is largest, as shown in table 1 and figure 8. ForρF < ρ < 1

2
the difference between theory and simulations becomes somewhat larger. The reason is that
equations (62)–(64) are only valid forζ < 1 or j < ρF . As soon asζ ' 1 or j ' ρF
equation (64) starts to lose its validity because in (62) and (64) terms ofO(ζL) ' O(1)
have been neglected. Simulation results forj (ρ), similar to those in figure 8, have been
presented in [21] without a theoretical explanation.
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Figure 8. ‘Equation of state’ for the fluxj (ρ) from (64) and (65) (full curve) compared with
simulation results forL = 1000 sites atβ = 0.2 (ρF ' 0.17) andβ = 0.5 (ρF ' 0.33). The
smooth crossover atρ = ρF is derived from the profile (62) of the blockage region.

Table 1. Equation of statej (ρ, β).

N ρ j (sim) j (theor)

L = 100 β = 0.25 ρF = 1
5

10 0.10 0.0955 0.0958
15 0,15 0.1401 0.1384
18 0.18 0.1638 0.1599

L = 100 β = 0.5 ρF = 1
3

20 0.2 0.1964 0.1962
30 0.3 0.2882 0.2857

L = 1000 β = 0.5 ρF = 1
3

300 0.30 0.2981 0.2980
330 0.33 0.3243 0.3230

L = 100 β = 0.75 ρF = 3
7

30 0.30 0.2971 0.2977
40 0.40 0.3914 0.3910

L = 1000 β = 0.1 ρF = 1
11

60 0.60 0.0587 0.0586
85 0.85 0.0806 0.0797

Next we consider then-point correlations, which are given through (28) and (16), i.e.

〈τkτk+1 . . . τk+n〉 = (j/β)(1− β)nζL−k (67)

with ζ given in (63). This relation also gives the profile〈τk〉 = j+ 〈τkτk+1〉 of the pile-up
region downstream of the blockage. In figure 9 then-point correlations withn = 1, 2 have
been compared with computer simulations and again there is good agreement.

Moreover, through arguments similar to those in section 5.1, we conclude that the
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Figure 9. Correlation functions〈τiτi+1〉 and 〈τiτi+1τi+2〉 as a function ofi. The points are
simulation results; the curve represents the relation (67), with parametersL = 1000, β = 0.5
andρ = 0.3.

probability P(k) to find the first site of the pile up region at sitek is proportional to the
excess density〈τkτk+1〉, so thatP(k) = ζL−k/(1−ζ ). The average widthλB of the blockage
region and the fluctuationδλB around this average are then found from (32) and (33) with
ζ given through (63), i.e.

λB = 〈(L− k)〉 = j/[β − j (1+ β)]
(δλB)

2 = 〈(L− k)2〉 − 〈L− k〉2 = βj (1− j)/[β − j (1+ β)]2
(68)

where 〈· · ·〉 = ∑
k(. . .)P (k). Simulation results forλB and δλB have been presented in

[21].
For thehigh-densityphase all corresponding results can be obtained from particle–hole

symmetry. For instance, the profile of the depletion region just upstream of the blockage
siteL is given by (29) withαe = β andβe = j/(1− j) wherej (ρ, β) in the jammed phase
equalsj (1− ρ, β) in (64) in the free-flow phase.

The behaviour of the interface in thecoexistenceregion is very different from that in the
TASEP withopen boundaries. In the latter the average number of particles〈N〉 fluctuates
wildly, and the locationR of the interface for a givenα = β, can be anywhere on the lattice
with equal probability, as the actual density fluctuates betweenβ/(1+ β) and 1/(1+ β).
In the TASEP on the ring with blockage the densityρ = N/L is fixed, andR is on average
given through (61), and there are only small fluctuationsδR around the averageR. We have
no estimate for the average position and width of the interface between coexisting phases.
However, away from coexistence, the profiles of boundary layers in both systems are rather
similar. The previous discussion confirms our intuitive interpretation that the TASEP on
a ring with a blockage behaves essentially the same as the TASEP with open boundaries
with injection rateαe = j/(1− j) and removal rateβe = β. This similarity holds for bulk
properties, profiles and correlation functions.
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7. Conclusion

In this paper, which is in part an account of [22], we have studied the NESS of the TASEP
with fully synchronous anddeterministic (p = 1) bulk dynamics (i) for open systems,
coupled to particle reservoirs with injection rateα and removal rateβ, and (ii) for closed
systems on a ring containing a stochastic blockage site with transmission rateβ. Mean-
field theories and the Boltzmann equation give a totally inadequate description of these
far-from-equilibrium states, because of the existence of strong short-range correlations.

As discussed in the introduction, there are many physical processes that can be modelled
as TASEPs, such as traffic models. It has been shown in [7] that simple extensions of the
present TASEP to stochastic bulk dynamics, to multispeeds, to multilanes, etc—which do
not seem to change the basic physics of the model—are able to model realistic traffic flows.
Consequently, if traffic systems are operated under NESS conditions with input and output
rates close to the jamming transition (hereα = β), then the wild fluctuations in the positions
of the tails of large traffic jams (position of the interface or shock wave in Burgers’ equation)
are intrinsic and physically unavoidable.

It is also of interest to present a more technical comparison of our new method and results
with existing ones. The theory presented here is based on two new ideas: (i) starting from
the microdynamic equations for the TASEP, we derive the explicit microscopic specifications
of the configurations and order parameters for the separate phases; and (ii) we introduce an
improved MFA in (25) that neglects fourth- and higher-order correlation functions at the
interface between the bulk phase and the boundary layers. The results for the profiles have
been compared with extensive computer simulations, and turn out to be indistinguishable
from the analytic results. We thereforeconjecturethat our results for the open TASEP with
α 6= β areexact up to terms that are exponentially small in the system sizeL, for instance
of order (α/β)L for α < β. Our results for the TASEP on the ring with a blockage show
small differences between theory and simulations. Clearly the identification of the flux
through a blockage as both the influx (to defineαe) and the outflux (to defineβe) of the
open system is only approximate. Moreover, the neglected correction terms(α/β)L start to
become ofO(1) asαe ↑ βe or j ↑ ρF (see figure 8).

The first idea has enabled us to obtain exact results not only for bulk densities and
currents, but also new results for the spatial and temporal correlation functions. The second
idea has enabled us to obtain analytic results for the profiles in the boundary layers of
density〈τk〉 and cluster correlation functions〈τkτk+1 . . .〉. For the more general stochastic
model withp < 1 of [8] no analytic results for profiles and correlation functions are known.
The ideas in (i) are akin to the elimination of the ‘Garden of Eden’ states in [8], and those
in (ii) to the ‘paradisical MFA’, hinted at in [8], but that lingo is not ours.

It is of interest to compare our results for fluxes and bulk densities with known results.
The phase diagram has been obtained before in [11, 13] for the same TASEP with sublattice–
parallel updating, and in [21] for the fully synchronous TASEP on a ring with a blockage.
It has a free-flow phase(α < β), and a congested phase(α > β), which coexist when
α = β.

In [8] a more generalstochasticTASEP with fully synchronous dynamics has been
analysed, where particles hop only with probabilityp (with p < 1). The corresponding
phase diagram contains the present(p = 1) phase diagram forα and β less than
αc ≡ 1− √1− p), but it also contains more phases, such as the maximal current phase.
In our (p = 1)-model the maximal current phase occurs only as abulk phase for the
special parameter valuesα = β = 1. In addition, the interface of finite width, separating
the coexisting phases forα = β < 1, constitutes a ‘microphase’ of maximal current
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configurations. In the TASEP withp = 1 the interface region (see section 4.2) contains only
local configurations common to both the low-and high-density phase. Thesecommonlocal
configurations are identical to the local configurations that constitute the maximal current
phase. It would be interesting to find out for the fully synchronous TASEP withp < 1 if it
is possible to identify an interface region forα = β < αc, which constitutes a ‘microphase
of maximal current configurations’ as well.

In the low-density regime(α < β < 1−√1− p) of [8] the flux and bulk density are
found as

j = α p − α
p − α2

and ρ = α(1− α)
p − α2

(69)

which reduce forp = 1 to the results in (16). The corresponding properties of the phase
diagram in the high-density regime can be obtained from particle–hole symmetry.

In order to illustrate the particle–hole attraction in these models, and its dependence on
the hopping ratep, we compare our results for the deterministic version(p = 1) for the
nearest-neighbour correlation functions in the bulk (fori � L− λR), i.e.

〈τiτi+1〉 = 0 〈σiσi+1〉 = 1− 2ρ (i ∈ bulk)

〈τiσi+1〉 = 〈σiτi+1〉 = j = ρ (∀i) (70)

with those for the stochastic version(p < 1) in [8], reading

〈τiτi+1〉 = ρ − j/p (i ∈ bulk)

〈σiσi+1〉 = 1− ρ − j/p (i ∈ bulk)

〈τiσi+1〉 = 〈σiτi+1〉 = j/p (∀i)
(71)

where relation (6) has been used. Of course (71) includes (70) forp = 1.
Note that in the low-density phase of the deterministic version there is a ‘hard core

repulsion’ for nearest-neighbour sites, as〈τiτi+1〉 = 0 or equivalently, a strong attraction
of particle–hole pairs on nearest-neighbour sites. In the stochastic version(p < 1) there is
also a particle–hole attraction on nearest-neighbour sites, because the covariance

〈τiσi+1〉 − 〈τi〉〈σi+1〉 = α2(p − α)2
p(p − α2)

> 0 (72)

i.e. there exists a positive correlation between an occupied site and the empty site, just in
front of it, which increases monotonically asp ↑ 1.

It would be very valuable to extend this method, based on the ideas summarized in
(i) and (ii) at the start of this section, to calculate the profiles, and spatial and temporal
correlation functions in the stochastic TASEP of [8] with its much richer phase diagram
containing a maximal current phase.
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Appendix. Sublattice–parallel dynamics

We will now illustrate how the method of this paper, when applied to the TASEP
with sublattice–parallel updating, yields the exact results for the bulk properties and the
asymptotic (large system) results for profiles and correlation functions, as obtained in
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[11, 13] The dynamics consists of two substeps. In the first step fromt → t ′ = t + 1
2, the

pairs(1, L), (23), . . . , (L−2, L−1) are updated in parallel whereL is even. There is only
a possibly nonvanishing microscopic flux̂i through theeven link (i, i + 1), whereas the
flux ̂i through theodd link vanishes. In the second step, fromt → t ′′ = t ′ + 1

2 = t+1, the
pairs (1,2), (3,4),. . . , (L− 1, L) are updated in parallel, then̂i+1 is possibly nonvanishing
and ̂i vanishes.

If we denote τa(t), τa(t + 1
2) and τa(t + 1) respectively byτa, τ ′a and τ ′′a with

a = {1, 2, . . . , L}, then themicrodynamicequation for the first stept → t ′ becomes:

τ ′i = τiτi+1 (0< i 6 L; i even)

τ ′i+1 = τi+1+ τiσi+1 (06 i < L; i even)
(A1)

and for the second stept ′ → t + 1

τ ′′i = τ ′i + τ ′i−1σ
′
i (0< i 6 L; i even)

τ ′′i+1 = τ ′i+1τ
′
i+2 (06 i < L; i even).

(A2)

With the conventionsτ0 = α̂ and σL+1 = β̂, as defined below (2), these equations also
include the boundary conditions for the open system. Moreover, we observe that the
evolution equations (A1), (A2) are invariant under the particle–hole exchange.

In the NESS there is again a constant site-independent flux through the system. The
flux 〈̂i〉 out of even sites at integer times is equal to the flux〈̂ ′i+1〉 out of odd sites at
half-integer times, i.e.

j = 〈̂i〉 = 〈τiσi+1〉
= 〈̂ ′j+1〉 = 〈(τi+1+ τiσi+1)(σi+2+ τi+2σi+3)〉 (A3)

whereτ0 = α̂ andσL = β̂ and i is even.
By studying the dynamics of clusters as in section 3 one finds that (A1) and (A2) impose

some very strong constraints on the allowed configurations, i.e.

(τσ )′′i−1,i = τ ′i−1τ
′
i σ
′
i−1σ

′
i = 0

(ττσσ)′′i−1,i+2 = τ ′i−1τ
′
i σ
′
i+1σ

′
i+2 = {(τττ )i−1,i+1+ (τσττ)i−2,i+1}σiσi+1τi+2τi+3 = 0.

(A4)

This implies that configurations containing(. . .10+ . . .) and (. . .1100+ . . .) can never be
created at integer times if one starts from an empty initial state. Such configurations
are thereforeabsent in the NESS forany value of α and β. The subscripts(±) on τ±
indicate that the relevant site has aneven(+) or anodd (−) label. Of course configurations
(. . .10− . . .) as well as(. . .0011. . .) are allowed at integer times.

Moreover, by arguments similar to those in sections 3.1 and 3.2, one shows again that
the first particle cluster can only be created at the exit site. Letk0 be the location of the
last particle on the last cluster of particles, then the interval downstream ofk0 contains
only isolated particles, separated by holes (free-flow configurations with interval density
ρ(< k0) <

1
2), and that upstream ofk0 contains onlyisolated holes(jammed configurations

with interval densityρ(> k0) >
1
2). All conclusions in the last three paragraphs of

section 3.1 carry over to the TASEP with sublattice–parallel dynamics, as does the phase
diagram.

Next, we consider the bulk properties for large systems(L→∞) in the free-flow phase
(α < β and ρF < 1

2). The low-density phase is again characterized by the microscopic
order parameterτiτi+1 = 0. To perform these calculations, we start, as in section 4.1, from
the constant flux relations (A3) in combination with the vanishing order parameter,

j = 〈̂i〉 = 〈τ2〉 = · · · = 〈τi〉 = β〈τL〉
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= 〈̂ ′i+1〉 = α(1− 〈τ1〉) = 〈τ2+ τ3〉
= · · · = 〈τi + τi+1〉 (A5)

valid for i � L−λR andi even. This implies forodd bulksites〈τ−〉 = 0, and foreven bulk
sites〈τ+〉 = α and〈τL〉 = α/β. If 〈j+〉 denotes the flux out of even bulk sites, and〈j−〉 the
one out of odd sites, then the results for the free-flow phase(α < β) can be summarized
as,

〈τ+〉 = α 〈τ−〉 = 0 〈τL〉 = α/β
〈̂+〉 = α 〈j−〉 = 0.

(A6)

The corresponding relations for the jammed phase(α > β) can be obtained from the
relations (8) for particle–hole symmetry, and read

〈τ+〉(α, β) = 1− 〈τ−〉(β, α) = 1

〈τ−〉(α, β) = 1− 〈τ+〉(β, α) = 1− β
〈τ1〉(α, β) = 1− 〈τL〉(β, α) = 1− β/α

(A7)

and for the fluxes, using (9),

〈̂+〉(α, β) = 〈̂+〉(β, α) = β
〈̂−〉(α, β) = 0.

(A8)

Next, we consider the profile in the right boundary layer of thelow-density phase, and
we construct the dynamics of the cluster functionsT , as in (11). By specializing these
equations to the low-density phase one arrives after lengthy, but straightforward algebra, at
a coupled hierarchy of equations for the correlation functions.

Let i or i + 1 (with i = even) be the last particle position on the last particle cluster,
then we find in the NESS the exact relations,

〈Tik〉 = 〈Ti,k−1〉 = 〈Ti,k+1〉 + 〈(τσσT )i−2,k+1〉 + 〈(τστσT )i−2,k+1〉
〈Ti+1,k〉 = 〈Ti+1,k−1〉 = 〈Ti+1,k+1〉 + 〈(τσT )i,k+1〉

(A9)

wherei andk are botheven. The present set of coupled equations is the analogue of (24).
By application of the mean-field assumption, formulated in (24) and (25), the above set of
equations simplifies to the set of recursion relations withi andk even,

〈Tik〉 = 〈Ti,k+1〉 + α〈Ti+1,k+1〉 + α2〈Ti+2,k+1〉
〈Ti+1,k〉 = 〈Ti+1,k+1〉 + α〈Ti+2,k+1〉.

(A10)

The boundary condition for this set is included by settingk = L.
Our special mean-field assumption for thelow-density phase neglects again higher-

order correlations between on the one hand the particle–hole pairsτσ and τστσ , and on
the other hand the tailing particle cluster at the interface of bulk phase and boundary layer.
The solution of these recursion relations yields

〈Tik〉 = 〈Ti,k−1〉 = α

β
〈Ti+1,k〉 = α

β
〈Ti+1,k+1〉

=
(
α

β

)L−i+1

(1− β) 1
2 (k−i). (A11)

From these results and from (6) we obtain the density profile of the boundary layer near
the exit forevensitesi,

〈τi〉 = α + (1− β)
(
α

β

)L−i+1

. (A12)
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For odd sitesi + 1 follows similarly,

〈τi+1〉 = (1− β)
(
α

β

)L−i
. (A13)

The results for the profiles and correlation functions (A11)–(A13) are in full agreement
with the exact results of [11, 13] for large systems, when terms of order(α/β)L have been
neglected.

In close parallel to section 5.2, we may also calculate the spatial and temporal correlation
functions in the bulk of the low-density phase. By setting the microscopic order parameter
τiτi+1 = 0 in (A1), (A2), the microdynamic equation for bulk sites(i � L − λR) reduces
to

τi(t + 1) = τi−2(t) τi+1(t) = 0 (A14)

wherei is even. The correlation function in the NESS withi andR even are then,

〈τi+R(t)τi(0)〉 = 〈τi+R−2t (0)τi(0)〉
= 〈τi+R(t)〉〈τi〉 = α2 (A15)

holding for 06 {i, j} � L − λR with j = i + R − t andR 6= 2t . For i and/orR odd,
the correlation function vanish, as〈τ 〉 = 0 for odd sites. We observe that the occupations
between two even sites in the low-density phase areuncorrelated, as a consequence of
the sublattice–paralleldynamics. In the corresponding case of fully parallel dynamics, the
occupations arecorrelated, as is shown in (44) and (46). The absence of correlation is
understandable here, as a particle, attempting to enter the system in the low-density phase
at site 1 is never blocked.
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[15] Scḧutz G 1993J. Stat. Phys.71 471
[16] Mallick K 1996 J. Phys. A: Math. Gen.29 5375
[17] Evans M R 1997J. Phys. A: Math. Gen.30 5669
[18] Hinrichsen H and Sandow S 1997J. Phys. A: Math. Gen.30 2745



Synchronous asymmetric exclusion processes 5063

[19] Schadschneider A and Schreckenberg M 1993J. Phys. A: Math. Gen.26 L679
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