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Abstract. For a fully synchronous asymmetric exclusion process with open or closed
boundaries only partial analytic results are known owing to the appearance of strong-short range
correlations, which invalidate simple mean-field approximations. Here we present a new method
for calculating basic properties of nonequilibrium steady states, and calculate densities, fluxes,
travel times, spatial and temporal correlation functions, phase diagrams, profiles and widths of
boundary layers and interfaces between phases in coexistence, as well as their microstructures.

This paper is based on two new elements: (i) a microscopic characterization of order
parameters and local configurations in the relevant phases, based on the microdynamics of the
model, and (ii) an improved mean-field approximation, which neglects certain four-point—and
higher-order correlation functions. It @onjecturedthat the density profiles, obtained here, are
exact up to terms that are exponentially small in the system size.

1. Introduction

Nonequilibrium stationary states (NESS) violate detailed balance, they cannot be described
as Gibbs states, and their behaviour shows a wealth of interesting phenomena that are
absent in thermal equilibrium, such as boundary-induced phase transitions, self-organization,
pattern formation, and long-range spatial and temporal correlations. They occur in classical
fluids [1], driven diffusive systems [2—4], granular flows [5] and lattice gas cellular automata
(LGCA) with collision rules violating detailed balance [6], of which traffic models [7] are
simple examples. Unfortunately, a general theory similar to Gibbs statistical mechanics
is lacking for NESS, where results seem much less universal, and depend strongly upon
boundary conditions, driving forces, and the (sequential or synchronous) order in which the
microscopic dynamics is applied [8].

The standard theoretical approaches are based on Langevin equations, fluctuating hy-
drodynamics, mode coupling theories, and ring kinetic theory, which are phenomenological
and/or approximate in nature. A large amount of theoretical understanding has also been
obtained from computer simulations.

However, since 1992 new methods for obtaining exact solutions for simple open one-
dimensional systems, the so-called asymmetric exclusion processes, have been developed
based on transfer matrix methods (Bethe ansatz, matrix product ansatz [9-19]). One can
calculate bulk properties, phase diagrams, density profiles of boundary layers and interfaces
between coexisting bulk phases, as well as spatial and temporal correlation functions. The
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number of exact results is rapidly growing. For an up-to-date list of references to analytic
results for asymmetric exclusion processes we refer the reader to [8].

Asymmetric exclusion processes describe (open or closed) systems of interacting
particles or random walkers on a lattice, in most cases linear chains, with hard core exclusion
for double occupancy, and with hopping rates differing for different directions. The bulk
dynamics may be deterministic or stochastic. Open systems are coupled to reservoirs at
both ends through stochastic boundaries. Closed systems on a ring are coupled to local
randomness such as defect sites [15, 21] or defect particles [16—18]. Applications range
from shock waves in the Burgers equation, to traffic flow problems, reaction-diffusion
systems and growth models.

The problem can be formulated in terms of master equations with discrete or
continuous time [9], or in terms of the equivalent transfer matrices for spin chains [20],
or as microdynamic equations, as is usually done in LGCA, when used as models for
nonequilibrium fluids [23]. LGCA represent perhaps also a more faithful representation of
real traffic problems [7, 17]. The LGCA approach will be followed in this paper.

The dynamics of updating sites may be applied in (random) sequential order, typical
for the master equation description, or in parallel, i.e. fully synchronous for all sites, typical
for LGCA, or in any intermediate version with strictly sequential or with sublattice—parallel
updating [11, 13]. The different ways of updating are an essential part of the model.
They affect the existence of different phases in the phase diagram, as well as the structure
of the spatial and temporal correlations. For instance, the so-called maximum current
phase (see [9]) is present in the totally asymmetric exclusion process (TASEP) with open
boundaries, when updating is carried out in random sequential order [9, 10], but is absent
for other updating schemes [11, 13, 21, 22]. The spatial correlations are weakest for
random sequential updating, intermediate for sequential and sublattice—parallel updatings,
and strongest for parallel updating.

As far as analytic approaches are concerned many exact results concerning bulk
properties, spatial and temporal correlations, and profiles are known for random sequential
and sublattice—parallel updatings [7—9, 11]. The fully parallel updating schemes of LGCA
offer the largest difficulties, because the dynamics creates strong short-range correlations,
which invalidate simple mean-field approaches. Only some bulk properties such as density,
flux and the phase diagram have been obtained [8, 21, 22], where ‘in the bulk’ means
‘outside the boundary layers’.

The main aim of this paper is an analytic calculation of the basic average properties of
single particles, and their spatial and temporal correlations in the NESS. Moreover, we derive
the profiles and widths of boundary layers and of interfaces between phases in coexistence,
as conjectured in [22] for an open TASEP with parallel updating, where the particles move
forward (which is fromleft to right in our frame of reference) fully synchronously at
every timestep with probability = 1 (deterministic bulk dynamics) if their right-nearest-
neighbour (r.n.n.) site is empty, and where input and removal rates specify the stochastic
boundary conditions. In [8] a much richer stochastic version of the same modepwith
has been considered, and mean-field results, based on a matrix multiplication ansatz, have
been obtained. It includes the deterministic TASEP, discussed in this paper, as a special
case. However, even with the highly sophisticated matrix multiplication ansatz, the profiles
and correlation functions have not yet been calculated as the associated matrix algebra is
quite complicated [8]. In the case of sequential or sublattice updating the model of [8]
has already been generalized to include backward jumps with probajilégnd input and
removal rates at both ends of the chain [12].

Our approach starts in section 2 from thécrodynamic equationavhich describe the
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time evolution of the set of occupation numbédrs(z)} of the sitesi = 1,2,..., L on
the chain at time, as a discrete continuity equation, in which all variables are Boolean
variables, having only values 0 or 1

Lt + 1) —5@) = Ji—a(t) — ji (). 1)

Here the instantaneous microscopic flizg&) counts the number of particles passing through
link (i,i+1) attimer =0, 1, 2, .... The influx jo(r) and outfluxj, (r) specify the couplings

to the stochastic reservoirs or blockage sites. Further specification of the fluxes depends on
the model, and will be given later.

A detailed analysis of the microscopic evolution equation for sets of particle clusters
7;7Ti+1. - ., derived in section 3, allows us not only to determine the short-range correlation
functions that are built up through the dynamics, but also to identify the different phases,
as well as the microscopic structure of boundary layers and the interface between different
bulk phases, without performing any averages. Averages such as bulk densities and flux,
as well as the phase diagram are calculated in section 4. The phase diagram shows a phase
transition from a free-flow regiméx < B), where all particles are moving at maximum
speed, to a congested or jammed regime> B), where the dynamics is controlled by
start—stop waves. Here is the input rate angd the removal rate. When both rates are
equal, there are coexisting phases with a sharp interface (shock wave) between them. The
interpretation of the interface as a shock wave forms the direct link with Burgers nonlinear
diffusion equation [14].

In section 5 an exact hierarchy for particle-cluster correlation functions is derived, to
which we apply our improved mean-field approximation (MFA). It assumes for the low
density phase, thamside the interfacéetween bulk phase and boundary layer, the higher-
order correlations between on the one hand a particle-hole pair, and on the other hand the
particle cluster on its r.n.n. site, can be neglected. This is equivalent to neglecting certain
four-point correlation functions. For the high-density phase, similar results are obtained
through particle—hole symmetry. The MFA reduces the hierarchy to a set of recursion
relations for the correlation functions and density profiles, which are solved in this section.
Knowledge of the density profile also enables us to calculate the average travel time of
particles. The results are new, and are in excellent agreement with extensive computer
simulations. The present MFA is similar in spirit, but not in specific details, to the improved
MFA of [7] that accounts for short-range two-point correlations, but neglects higher order
ones, and that leads to the solution of the TASEP on a ring without a blockage.

To test the validity of our MFA we have applied the method in the appendix to the same
open TASEP, but now with sublattice—parallel updating, for which the exact correlations
functions have been calculated in [11, 13]. It appears that the results agree with the exact
results, apart from terms that are exponentially small in the length of the chain. Moreover,
it turns out that spatial correlations arising from parallel updating are quite different from
those coming from sublattice—parallel updating.

In section 6 we exploit the analogy that a blockage site on a ring has with on the one
hand the entrance site and on the other hand with the exit site of the corresponding open
system. In this way we recover the results of [21] for the phase diagram, fluxes and the bulk
densities for the TASEP with a blockage on a ring with parallel updating. In addition we
are able to construct the higher-order correlation functions, density profiles and finite-size
corrections (rounding) of thg(p)-relation (‘equation of state’) at the high- and low-density
regimes of the coexisting phase region. Again, the results are new and in good agreement
with computer simulations. We end section 7 with some conclusions and suggestions.
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2. TASEP with synchronous dynamics

2.1. Definitions

We consider a totally asymmetric exclusion process with open boundaries as LGCA, with

particles living on a one-dimensional lattice with sites labelled= {1,...,L}. The
configuration of particles at time = 0,1, 2, ... is described by the set of occupation
numbers{z; (1)} withi = 1,2, ..., L, wherer;(t) = 1 — 0;(¢t) = 1 if the sitei is occupied

by a particle, and;(¢) = O if the site is empty, i.e. is occupied by a hotg(¢) = 1). The
dynamics is defined such that all particles, witheamptyr.n.n. site at time, simultaneously
jump to that site at the next timestep+ 1). If that site is occupied, the particle does not
move. So, the dynamics or updating in the bulk of the system is deterministic and fully
parallel.

Next, boundary conditionsare specified. We consider an open system, coupled to two
stochastic reservoirs, one that injects particles with a probabilif) < « < 1) into site
1, provided it is empty, and one that removes particles from Kiteith probability 3
(0 < B < 1) provided siteL is occupied.

Throughout this paper the configurations of the system at tira@d ¢ + 1 will be
denoted byr; = 7;(r) andt/ = 7;(r + 1). Then, according to the dynamic rules described
above, the configuratiofy is given by the microdynamic equatiafi = t; + j,_1 — J; with
bulk and boundary fluxes given by

ji:‘fio‘i+l (l:].,,L_l)
Jo = 1001 = Qo1 (2
JL=TL0L+1 = ,éTL-

Hered = o and$ = o, 1 represent a set of independent random Boolean variables, which
take the valueq0, 1} with expectationsi@) = « and (8) = B, and which are drawn at
every timestep from a uniform distribution. For later analysis it is convenient to transform

the microdynamic equation (1), (2) to hole-occupation numbges 1 — t;, yielding
0! = 10111+ 0i-10; i=1,...,L). 3)

The equations for the time evolution of averages:)) = (t;);, correlation functionsz; t; ),
etc, can be derived by multiplying the equations in (1) for different sites and subsequently
averaging over arbitrary initial configuratiorig; (0)}. In this way one obtains an open
hierarchy which couples the time changes of a correlations function to higher-order ones.
For large times#{ — oo) the system will approach a nonequilibrium stationary state,
which is the main focus of attention in this paper. Averages over the NESS are denoted
by (...). This state is expected to haique i.e. independent of the initial configuration
{r;(0)}. Therefore in analytical considerations the initial state is always taken to be the
emptystate{r;(0) =0} foralli ( =1,2,...,L).

2.2. Symmetries
A gquantity of paramount interest is the average flg¥ through the link {, i + 1),

(Ji) = (tioi11) 4)

1 In the model of [8] the boundary fluxes are the same, but the bulk flux is generalize@=t®; t;0;+1, where
pi with (p;) = p represents a set of independent Boolean variables, simikarated 5.
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and the local flow velocity or average spegd= (J;)/(z;). In the NESS these averages are
independent of time, and the average flux can be calculated from the continuity equation (1),
combined with (2) using the relatiofr/) = (r;). This yields a constant site-independent
flux j through the system,

(i-1) = (i) = (ioi1) = j

(Jo) =a(l— (1)) =j (5)
(Juy=BtL) =]
withi =0,1,..., L. The flux in the NESS is translationally invariant. Once the nearest-

neighbour correlations are known, the density profile can be calculated from (4) with
oiy1 = 1— 141, yielding

(t) =J +(titiya)- (6)

The equations of motion exhibit particle—hole symmetry, anddihaity transformation

T, <> Op—iy1 i=1...,L)
'L'0=55<—>UL-~-1=,1§ (7)
Ji <> Jr-i

maps the microdynamic equation (1), (2) into the equivalent representation (3), i.e. the
microdynamic equation is invariant under particle—hole exchange. Consequently, the
average occupation numbers satisfy the symmetry relations

(ti)(a, B) = (oL-i+1)(B, @)
=1—(t—it1)(B, ) (8

with i = 1,2,..., L. As the flux mapsj; <> j._; under the duality transformation, the
average flux satisfies the symmetry relatiptw, 8) = j,_; (8, ). However, the average
flux in the NESS is constant for all sites, hence

Jle, ) = j(B, ). ©)

The particle—hole symmetry is a very powerful tool, as all propertiesafor g (high
density) can be obtained from those tor< 8 (low density).

3. Dynamics and structures

3.1. Build up of dynamic correlations.

In this section we show that a qualitative analysis of the dynamics and instantaneous
configurations—without performing any averaging—leads already to the complete phase
diagram, to an identification of the relevant order parameters, and to a qualitative
characterization of the structure of the high- and low-density phase, as well as to the typical
dynamics in the different phases.

In the following we will consider the dynamics daflusters of particles and holes
described in terms of the Boolean variables,

Ty =tuTk1..-T (10)
Skl = OkOk41...0]
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with £ < [, i.e. a cluster has at least two constituents. The time evolution equations for
these objects are obtained by multiplying (1) franto /, usingo;r; = 0. The result is
T = Tipv1 + t—10k T 1041
= (T + T-101) Tkt1.141
St = Sk—1.1 + Sk—1.1-1T10141

= Sk—1,1-1(07 + 1o141).

(11)

Multiplication of both equations in (11) then gives
(TinSns1.0)" = (i + T—100) Tk 1,0 415n.1-1(07 + 1o41) =0 (12)

where the relatiort,0,, = 0 has been used.

The implications of (12) are quite interesting, as it states that a configuration containing
(...1100...) cannotbe created. As all possible configurations have evolved from the empty
initial state, configurations containing a cluster of partid¢king a cluster of holes on its
r.n.n. site do not exist in the NESS.

Moreover, a configuration. (. 110100 ..) with a single particle—hole pair separating
the two clusters cannot be created either. The reason is that only the nonexistent
configuration (..?110072..) in the previous timestep could have created the configuration
under consideration. The question mark represents a ‘0’ or a ‘1’.

Similarly a configuration.(.. 11(01)*00...) with k (k = 1, 2, 3, ...) intermediate hole—
particle pairs does not exist, as it could only have been created from the configuration
(...21(10)%0?...) = (...?1101)*~100?...). It then follows by complete induction that
none of the above configurations can exist in the NESS.

Consequently, the possible configurations generated by the dynamics from the empty
initial state do not contain any configurations with two or more empty sites to the right
of the left most cluster of particles. So, the fully parallel dynamics of the present TASEP
builds up very strong short-range correlations in the NESS.

From the observations about the build up of dynamic correlations, we arrive at some
important conclusions about the structure of the NESS khdtibel the position of the left-
most particle in the left-most particle clustefThe configurations in the interval [ty — 1]
consist ofisolated particles, separated by an arbitrary number of holes. In these so-called
free-flow configurations

717, =0 (i < ko) (13)

i.e. there is a ‘hard core repulsion’ between particlesnearest-neighboursites. The
instantaneous fraction of occupied sites (density) in this interval is thergfatekg) < %
The configurations in the intervat{, L] consist ofisolated holes, separated by an arbitrary
number of particles. In these so-callgsnmedconfigurations

0;_10;, =0 (i > ko) (14)

i.e. there is a ‘hard core repulsion’ between holes on nearest-neighbour sites. The
instantaneous fraction of occupied sites in this intepat ko) > %

Therefore,large systems with an overall density (fraction of occupied sitesk %
necessarily have only bulk configurations of the free-flow type with a nalvoundary
layer of jammed configurations near the exit site of (yet unknown) width << L,
whereas forp > % bulk sites contain only jammed configurations with a narrow boundary

1 Note, however, that an instantaneous configuration of the whole system may not contain any cluster of particles
(at low densities) or any clusters of holes (at high densities).
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layer of free-flow configurations of width; near the entrance site. Which value of
occurs, depends on the injection and removal rateand g, and will be determined in
section 4.1, wheraverageswill be considered.

3.2. Instantaneous profiles

To study the density profile we consider the creation of pairs and larger clusters from a
purely dynamical point of view. We first observe that the first particle pair can only be
createdat the exit site and only if8 < 1. This follows from the evolution equation (11)

for T x+1 which shows that the creation of a new pair /at{+ 1) requires the existence of

a pair at k + 1, k + 2). Therefore, creation of thiérst pair 7,1, atr + 1 is governed by

(tp17) = (114 11200 1)T.(1— B) (15)

where the termr,_;(¢)r.(¢t) on the right-hand side of the equation vanishes, as this pair
has not yet been created. This implies that pairs cannot be creatgd iE g = 1.
Consequently, if8 = 1, there is no boundary layer near the exit, the density profile is
totally flat over the whole system and all configurations are pure free-flow configurations.
All space- and time-dependent correlations in this NESS can be calculated exactly in a
simple manner, as will be shown in section 5.2, where spatial and tempanmalations

will be studied.

If B8 < 1, however, patrticle clusters can be created near the exit site. In the case
in which the injection rate is smaller than the removal rate, the average interval between
arrivals Y« at the pile-up region near the exit is larger than the average intefgabdtween
removals, and a large fraction of configurations are pure free-flow configurations without
any clusters near the exit site. On average there is only a narrow boundary layer of jammed
configurations. So, the bulk properties of the system in the low-density cases are
determined by the injection rate at the entrance site.

In the jammed phasex(> g ), there is on average a large backup starting near the
exit and extending to the left. The jammed configurations in the NESS cover the bulk of
the system, leaving only a narrow boundary layer with free-flow configurations near the
entrance. The bulk properties in the high-density phase are determined by the removal rate
B at the exit site. We also note that the phase diagram of the stochastic model of [8] contains
aline(1—-a)(1 - B) = 1-— p, where the density profile iat over the whole system.

In the present deterministic modéb = 1) this corresponds to the ling = 1 (free-flow
phase), and to the line = 1 (jammed phase).

4. Phase diagram

4.1. Free-flow and jammed phases

For large system sizéd. (thermodynamic limit) andx < B the system is in the free-
flow phase, and the dynamics rigorously implies that the bulk of the system (except the
boundary layer near the exit) has orn$plated particles. So, in the thermodynamic limit,
this low-density phase is characterized by an average density (occupﬁtioré and has

the vanishing order parametersr;t;,1) = (titi11Tiv2) = --- = 0 wheni is a bulk site
defined as << L — A with A; the width of the boundary layer near the exit. In fact, even
the microscopic order parametet;  ; = 0 in the free-flow phase on the basis of (13). Of
course the correlation®;o; 1), (0;0:110;12) etc, arenonvanishingin this phase.
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Moreover, the vanishing order parameterr;,;1) = O for bulk sites, in combination
with relations (5) imply the following properties of the low-densitge-flowphase:

J=(t)=(n)=---=(tu)=p
(y=j=p=0a/(1+a) (16)
() = Jj/B =a/[B(1+ )]

where thebulk density p is defined as the average occupation) at a bulk site:.
Because there is an excess density in the right boundary layer, the bulk dgnsity
(N)/L — |O(Ax/L)| in the low-density phase, whet&/) = Y~ (z;).

Several interesting features can be seen. First of all, the bulk dynamics is completely
determined by the input rate at the entrance site, as already explained in section 3.2.
Second, the flux equals the bulk density, indicating that particles are never blocked in the
free-flow phase, and are travelling with an average spgee j/(r;) = 1. A particle
entering the lattice is never blocked until it leaves the bulk and enters the boundary layer
near the exit, where it slows down to a velocity = j/(r;) = g with 8 < 1 as a
consequence of the pile up. The bulk density of the systers; «/(1 + «), is always
smaller than%, sincea < B < 1. Therefore, we will also refer to the phase with< g as
the low-density phas®f the system.

Similarly there is in the thermodynamic limit mmmed phase fore > g of high
densityp > % containing only isolated holes except in a boundary layer of widtmear
the entrance where there is a deficit density in comparison with the bulk density. The phase
is characterized by the microscopic order parameter,; = 0, or equivalently by the
nonvanishing order parametefst; 1), (t:Tiy1Ti12), €tc, in the bulk.

The properties of the high-density phase with> g can be related to those of the
low-density phase witle < 8 by the particle—hole symmetry of section 2.2. In this case,
particle—hole symmetry implies that the dynamics of particles moving forward is identical to
that of the holes moving backwards. In this point of view holes are injected at the exit site
with probability 8 and move downstream where they are finally removed from the lattice
with probability . So, (16) implies for thgammedphase:

p = (tL)(a, B) = (01)(B, @)
=1—(m)(B, @) =1/(1+B)
(L) =(tL-1)=---=(u)=0p
(t)(@, B) =1 —(t1)(B, @) = 1— B/[a(1+ B)]

wherei is a bulk site in the jammed phase, defined as> A, . Similarly the average flux
in the jammed phase follows from (9) as

(17)

j=h(mﬁ)=h(ﬁﬂ)=%=/39=1—p (18)

which implies an average speed = j/p = 8. In the boundary layer near the entrance a
particle has a higher average speed~ j/{r1), and it slows down to speefl, because
of frequent blockage by a preceding particle. The average flux may also be written as
J = 1— p, indicating that the flux in the jammed phase equals the density of holes, which
move with unit speed to the left. We note that these results are exact in the thermodynamic
limit as L — oo.

It is interesting to compare the results (16)—(18) for fully parallel updating with those for
sublattice—parallelupdating, as derived in (A5)—(A7) of the appendix. Let) and(j.)
be respectively the bulk density and the flux at even sites, as defined in the appendix, and
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(j—) and(z_) the corresponding ones for odd sites, then we have for the sublattice—parallel
dynamics in thdree-flow phase(a < B),

(1) =« (-)=0 (t) =a/p

. . (19)
(j+) =« (j-)=20
and for thejammedphase(a > B)
(t)=1  (t)=1-p  ()=1-B/a (20)

(Jr) =5 (j-y=0.
The average properties, in particular of the odd sites, are very different from the TASEP
with fully synchronous dynamics.

Before concluding this section we discuss the collective dynamics in the different bulk
phases. In the low-density or free-flow phase every particle has at least one hole to its right.
Consequently it will advance one site per timestep, and has the maximum speed..

In fact any free-flow configuration with a hole to its right is propagated as a whole with
velocity vy = 1. In the jammed phase on the other hand, every cluster mdrticles is
preceded by a single hole. At every timestapy the lead particle of each cluster advances
one site, and becomes the tail particle of the preceding cluster. Therefore clusters of constant
length are moving backwards with unit speed, and so do isolated holesctflparticle

in a cluster makes its first move only aftetimesteps, and the average speed of a particle

vy = B (see (18)). The motion in the jammed phase is therefore characterizedrbystop

waves which are typical for congested traffic flows.

4.2. Coexisting phases

From the analysis of the dynamics of section 3.2 we can also infer some properties for the
casex = B. Then there exist on the left-hand side of the system free-flow configurations
(low-density phase) and on the right side jammed configurations (high-density phase). Each
of them occupies a finite fraction of the system. The weexisting phasesre separated

by an interface of microscopic width which contains only particle—hole pairs.

Whena 1 8, the bulk densityp = /(1 + «) in the free-flow (low density) phase
increases untill it reaches its valug = «/(1 + «) = B/(1 + B) at coexistence At the
same time the right boundary laygk grows to a region of macroscopic size, containing
the jammed phase. In the jammed (high-density) phase, the densityl/(1 + B) is
controlled by the release rae As B8 | « the bulk density also grows to its coexistence
valuep; =1/(1+p) =1/(1+ ).

In open systems at coexistenee £ ) the instantaneous positioR of the interface
wildly fluctuates, as it can be anywhere on the lattice with uniform probability. For a system
of L = 1000 sites this statement has been verified by collectiBgc 110" measured values
of R into 10 equal-sized bins. The resulting histogram is flat within fluctuations of 1%.

Consequently, fow = 8 the instantaneousverall density = (1/L) ), 7, fluctuates
betweenor = «/(1+ @) andp; = 1/(1+ «). Forlarge systems (in the approximation of
zero interface width), the instantaneous density is given by

R « R 1
6= H(R) = — 1-—— . 21
p=pH L1~|—oe+( L)1~I—oe (1)

The average density = (o(R)) with R uniformly distributed over the system yields
(R) = %L andp = % in agreement with thexactresult to be derived in (49). Moreover,
we calculate the expected densjtyx) at site x, by averaging the instantaneous profile,
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p(x|R) = prB(R — x) + p;0(x — R), over R, wheref(x) is the unit step function. This
yields thelinear density profile,

1 L
p(x)zzRZ:lﬁ(xm):pF (1—%)+p1%- (22)

In the exactresults of [11-13] for the TASEP with sublattice—parallel updating also a linear
form for the average density profile at coexistence has been found.

Of course, the instantaneous density praofildoes not have a zero width as assumed in
(21), but a finite one, as will be discussed now by studying the dynamics of the interface.
To define the instantaneous locati®and the instantaneous width of the interface we
introduce its front and tail sitel and jo. Let jo be the position of the right-most hole in
the right-most cluster of holes, ariglthat of the left-most particle in the left-most cluster
of particles, wherejo < [y (see section 3.1). The sitgg and ¢y belong with certainty
to the low- and high-density phase respectively. Then the intefgald = jo + 2n + 1)
contains only: alternating particle—hole paid0)" (n =0, 1, 2, ...), which are allowed in
both phases. The instantaneous position of the interface is definEd:aé(jo + lp) and
its instantaneouwidth asw(n) = 2n = lp — jo — 1. As the patrticle (hole) cluster is moving
with unit speed forward (backward), the width decreases by 2 units per timestep, vanishing
aftern times steps and yielding a hole cluster adjacent to the particle cluster. During this
period R = (jo + £o) remains fixed.

What happens next depends on the sizesdc of the two adjacent hole and particle
clusters respectively. i > ¢, the positionsj, andly remain fixed during/ — 2) timesteps.
After (h — 1) timesteps the cluster of particles disappears, anuioves one site forward,
wheready makes a forwargump to the right-most particle on the then right-most cluster.

If h < ¢, the same statements can be make gth/particles/forward interchanged with
Jo/h/holes/backwards respectively. df= h both pointsj, andlo jump simultaneouslyThe
dynamics of the interface width is illustrated in figure 1.

The probability distribution of the sizes of the right and left jumps, as well as those
for the time intervals between the jumps, are determined by the probability distribution
of finding n particle—hole pairs between two particle clusters in the high-density region, or
between two hole clusters in the low-density region. The posRiarfithe interface performs
a random walk over all sites of the system around the average po&itjoa L/2. Once the
above probability has been calculated, its mean-square displacéd®At= ((R — L/2)?)
and the associated short time diffusion coefficiéhtcan be calculated in principle for
time intervalsT satisfying the inequalityR = ~/2DT « L/2. The long time diffusion
coefficients vanishes due to the presence of the boundaries. Here we only illustrate the basic
idea of the method by calculating the average width of the interface, using a mean-field
estimate.

The width(w), measured over a long time interval, is shown in figure 2, as a function of
the injection rate. This behaviour can be understood on the basis of simple arguments. Let
the instantaneous interface configuration be?0010)"11?...) with (» =0, 1, 2, ...), then
its width isw(n) = 2n. The probability on the configuratiof®@0(10)") tailing (11?...)—
which is the start of the jammed phase—Hgn) = (1 — o)a”, wherea” is the probability
for injectingn particles and (*+ «) the probability for not injecting a particle. In the present
asymmetric exclusion process, every injected particle is followed by a hole. The average
interface width is then

(w) = "2nP(n)=2/1—a). (23)

This estimate gives a good representation of the simulation results, as shown in figure 2.
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Figure 1. Instantaneous interface width between coexisting phases as a function of time,
measured forL. = 1000, « = B8 = 0.9. Notice the saw-tooth behaviour of the width,
corresponding to right and/or left jumps of the interface boundaries.
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Figure 2. Average interface widtliw) between coexisting phases, measured over an interval of
2 x 10* timesteps, as a function of injection ratein a system with, = 1000, and compared

with the theoretical predictiofw) = 2/(1 — «). As « 1 1, the width of the interface changes
from microscopic to macroscopic.

4.3. Equation of statg (p)

pressure in thermal equilibrium.

The results of sections 4.1 and 4.2 allow us to construct the/flgx as a function of the
bulk densityp, as shown in figure 3. It is the analogue of the equation of state for the

In the low-density phaseo(< pr), the densityp = «/(1 + «) varies asx runs in the
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Figure 3. Flux j(p) as a function of density (full curve). Forp < pr the flux isj = p, and
for p > pyitis j =1—p. Forpr < p < py with pr = /(14 8) andp; = 1/(1+ B) the flux
J = pr remains constant. The triangle bounding the regioa min{p, 1 — p} of coexisting
phases is called the fundamental diagram in traffic flow problems.

interval (0, 8) with 8 kept fixed, and the fluy () = p increases to its coexistence value
pr = B/(L+ ) asa 1 B.

In the high-density regiolip; < p < 1), the density,o = 1/(1 + B), can be varied by
keepinga fixed, and takingr < 8 < 1. The flux is given byj(p) = 1— p.

Let us compare the behaviour of flyxand bulk densityp when crossing the transition
line « = B, wherep = «/(14 «) andj = p in the low-density phase, and= 1/(1+ 8)
and j = 1 — p in the high-density phase. This shows that the ffuis continuous across
the linea = B, whereas the density makes a jump = po; — pr = (1 — a)/(1 + @).
Therefore the NESS of this model shows a first-order phase transition across thedie
At coexistencga = B), the flux remains constant and the instantaneous overall dehisity
fluctuates betweepy andp;.

The triangle bounding the region & minp, 1 — p) is called thefundamental diagram
in traffic problems, and corresponds to the coexistence region in thermodynamic phase
transitions.

It should be remarked that the basic formula (21) in this section for the instantaneous
density o(R) is simply the analytical representation of the conclusions of the dynamical
analysis of sections 3.1 and 3.2, which fixes the values of the coexisting densities. In
addition, there is ara posteriori justification of this formula through (23), which shows
that the width of thénstantaneousnterface is of microscopic size for not close to 1.

The uniform distribution, postulated for the positigh of the interface, is only an
observation deduced from computer simulations. Consequently, the average linear profile
in (22) is a phenomenological result.
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5. Correlation functions

5.1. Profiles and nearest-neighbour correlations

Consider first the low-density or free-flow phase where: 8. To determine the density
profile (z;) from (6) we need the nearest-neighbour correlation functigm, 1), which
represents the probability of finding the sités k + 1) occupied. As already derived in
section 4.1, we havér,) = p and (tyr41) = O for bulk sites(k <« L — Ag). It remains

to calculate these quantities in the boundary ladyer L — Az near the exit. To do so, we
need the dynamics (11) of the cluster correlation functions (10), averaged over the NESS,
where(T’) = (T). This yields

(Tre) = (T e+1) + (t—10k Tiv1,041) (24)

where¢ =k +1,...,L and we recall that; ., =1— ﬁ If Tii1.¢41 refers to the left-most
particle cluster, then the sitgg — 1, k) belong by definition to the boundary layer, and
the probability of the configuratiom,_104 Tx+1.¢+1 €qualsa times the probability for the
configurationTy, 1 ¢,1. Sincek+1 is by definition the left-most site on the left-most particle
cluster, the occupation numbey equals unity with probability 1. In fact there are only
very few particle clusters in the pile-up region near the exit site, as the average removal
interval 1/8 is less than the average arrival intervdiat the pile-up region. So, we expect
that the least advanced patrticle cluster gives the dominant contribution to the probabilities,
and we make thenean-field assumptiothat the above factorization holds for all further
advanced particle clusters as well, i.e.

(Tra) = (Try+1) + o{Tpq1,041). (25)

The present MFA therefore assumes that four-point correlations and higher-order ones

between a particle-hole pair and the particle cluster just on its r.n.n. site (which by definition

belong to the boundary layer in the present model) are negligible in the low-density phase.
The recursion relation above can be solved starting flom L, where (T; ;1) =

( T ) (1 — B), and yields after iteration

1— 1— L—k
1) =Pt = (“2) ) (26)

where we have used the relatidft, ;) = (r.). Taking¢ = L — 1, L — 2, etc gives
(Tr..-1) = (@/B){Tr+1.2), etc and one finds by complete induction

1

(Te,L—e) = (%) (Tes1,1)- (27)

Combining this with (26) yields
o L—k

(Tke) = (BTpa... 1) = (E) 1-p)' ). (28)

The density profile is then obtained by inserting (28) ffet k + 1 in (6) with the result
. 1-8 (a)“k
) =j{1+— |- 29
() =J { 5 5 (29)

where(t.) = j/B = a/[B(1+ «)] has been used. By taking the thermodynamic limit of
(28) and (29) one recovers the properties of sections 3 and 4 for the bulk phase, i.e. the order
parameterstytii1) = (TkTkr1Trr2, - - -) @re vanishing, and the bulk densityds= () = j.

In addition (29) describes the profile of theundary layemear the exit. The excess density,
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which equals the nearest-neighbour correlatiqn;. 1), decreases exponentially on a length
scale 1/ In(8/a), independenbf the system size.

Our mean-field assumption, formulated first above (25), also implies that gitel},
marks the beginning of the boundary layer. Hence, the probal#li#s) that the width of
the boundary layer id — k, is thenproportional to the excess densityr;) — j in (29),
yielding after proper normalization,

Pk =4/ Q-0 (30)
with

{=a/p. (31)
The expected width of the boundary layer in the low-density phase is then,

¢ o
p=(L-k =127 =g, (32)

and the fluctuatiodi g around this average is

Ghp)? = (L~ — (L — k2= = P (33)

1-02 B-a?
The width of the boundary layer is ‘microscopic’ in nature, i.e. independent of the system
size. In the limiting case ag 1 B (coexisting phases) the widity diverges and becomes
of macroscopic size. It is given by — R, as the locatiorR hops around over all sites of
the lattice.
The correlation functions in the high-density or jammed phase with B can be
obtained from particle—hole symmetry, for examgter; 1) (o, 8) = (or koL _k+1)(B, @)

and vyields
1- 1- !
(T Thy1) = ﬁ - 1+g (g) } (34)
Similarly, the density profile follows from (34) and (6) as
_ 1 BY
(o) = 115 |:1 -(1-w (;) :| . (35)

It shows a boundary layer near the entrance site with a deficit density that decays on a
length scale 1In(a/pB).

For the coexisting phase region, where- 8, the boundary layers at both ends diverge,
i.e. become of macroscopic size, and the typical wigtlof the interfaceé = (w) =
2/(1 — @), or equivalently~ 1/|In«|, as was calculated in section 4 on the basis of
dynamical considerations.

In figure 4@) the density profiles are compared with computer simulations, for two
different combinations of parameter sdts = 0.50; 8 = 1} and {« = 0.50; 8 = 0.51}
and the results arimdistinguishable For 8§ = 1 the profile is flat, as already explained in
the first paragraph of section 3.2. Moreover we have compared simulations and theoretical
predictions for the three- and four-point correlation functiéng;1tx+2...) for « = 0.50
and 8 = 0.55. The former ones are shown in figureb¥(and the results are again
indistinguishable.

In the appendix the density profile and correlation functions for the same TASEP with
sublattice—parallel updating [11] have been calculated, using the same mean-field theory.
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Figure 4. (a) Density profiles for{a = 0.50;, 8 = 1} (full curve) and{a = 0.50;, 8 = 0.51}
(broken curve) for a system with = 1000. The bulk densities are the same (see (16)), except
in the boundary layer, where the excess densitytiis 1), averaged over.® x 10’ timesteps.

(b) the three-point correlatiorir;7;+17;42). In both plots the theoretical (broken curve) and
simulation results (diamonds) are indistinguishable. The latter are time averaged®werQf
timesteps.

Here the average flux is quite different, i.e= 8(r.) = «, but the profile(z;)/j is quite
similar, i.e.

_ L—k
(te) = J {Sk,even+ 1T'B <%> } (36)
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at least for even sites. For comparison we also quote the results for the correlation functions,
as derived in (A11) of the appendix, i.e.
o o

(Ti) = (Tky-1) = E(TkJrl,l) = 8 (Teq1,0-1)
o L=k 1
N (E) 11— P (zy) (37)

which should be compared with (28). We emphasize thatand L are evennumbers in

the present formulae. Comparison with (28) shows that the correlation functions are quite
different, in particular the differences betweewenand odd sites. The results (36) and
(37) areexactto terms of ordera/B)~, as can be verified by comparison with the exact
results derived in [11, 13].

We conjecturethat the corresponding results (26)—(35) for the same TASEP with fully
parallel updating and with open boundaries are also exact, up to exponential terms of
order (a/B)* for « < B, and up to(B/a)" for « > B. However, fora close tog, say
a = B(1—38/L), the expressions for the profiles in the boundary layers break down, as the
neglected termsa/B)F ~ exp(—3§) become of©(1) for large L.

5.2. Spatial and Temporal Correlations

Next we will determine the correlation functionis r;,.) for bulk sites in the low-density
phase(a¢ < B < 1). As explained in section 4.1 the dynamics rigorously implies that
the ‘microscopic’ order parametefit;,; = 0 in the bulk phase. Consequently, the
microdynamic equation for all sites outside the pile-up region near the exit becomes

'L']/_ = 7001 = 5{(1 — ‘L’l)
T =1_1 1l<i<kL—Aig). (38)
The last relation impliesranslational invarianceof the correlation for the bulk phase, i.e.

(TiTitx) = (Tic1Tiga-1) = -+
= (T1T11x) = o (Tx) — @(T1Ty). (39)
The last equality follows from (38) fot;. Then (39) implies that the pair distribution
function, defined ag(x) = (t1714,)/{(114.), Satisfies the recursion relation
gx+1) =a—agl). (40)
We calculate the generating functiafi(x) = > "> ;z*g(x) whereg(0) = 1, by multiplying
(40) with z**1 and summing ovek. Solving this equation then yields
1-z1-w)
F@Q)=—7—7——.
@ Q+az)(1-2)

After decomposing the right-hand side of (41) into partial fractions, and expanding the result
in powers ofz, we find the pair correlation function in the bulk of the low-density phase:

(41)

gx) =[a+ (—a)]/1—a) (42)
which yields
(TiTitx) = (T ) (Tip)[1 + C(x)]
= (w)*[1 = (=" 1. (43)

This is an asymptotically exact result for<d {i,i + x} < L — Ag. In the case in which
B = 1 there is no right boundary layer, and (43) is exact for all interparticle distances
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x. The pair function oscillates around its uncorrelated value, it vanishe® ferl, as it
should, and is independent 8f because the bulk phase is only determined by the injection
rate «. Neighbour particles are strongly correlated. The spatial correlation function in
the bulk C(x) = —(—a)*~! decays exponentially with a correlation length = 1/| In«|.
This correlation length becomes of macroscopic sizeras> 1 and 8 = 1, where the
system approaches the critical maximal current phase [9], which in the present model is
only realized at the parameter values= 8 = 1.

The result (43) for the bulk correlations is very different from those in [11, 13] for
sublattice—parallel dynamics, where the spatial correlations do not depend on the interparticle
distancex. For instance, in that model one has in thdk of the low-density phase

AR (i, x even)
(TiTix) = {O (elsewhere). (44)

So far we have discussed spatial correlation functions for bulk sites of the NESS. Similar
results can be obtained fime-andspacedependent correlation functions. It follows from
the microdynamic equation (38) that in the low-density phase

Tigx(t) = Tige1t =D = = 14.,(0) (45)
and consequently we have the asymptotically exact result,

(Tigx (DT (0)) = (Tigr—rTi)
= (r)*{1— (—a)* "1} (46)

valid for 0< {i, j} <« L —Ag with j =i+ x —t andx # t. For the special casg = 1
the result (46) is exact for all sites and for all times.

One may also consider correlation functions involving fluxes. Inltiedensityphase
(¢ < B) we have

(Ti4x (D7) = (Jitx DT (0)) = (it (1) (0)) (47)

because the macroscopic order parameter, = 0. The result obtained for the low-density
phase can be easily extended to ttigh-densityphase using particle—hole symmetry and
the relation] = 0,1 on account of (3) and (14). This yields for bulk sites

(TiTigx) (0, B) = (1= Tp141 — Tox—it1 — TL—it1TL—x—i+1) (B, @)
=—1__ x+l= i21__ x+1
(1+ﬁ)2{ =B =1 - (="}
(Ti Jix) (@, B) = (Ti0ix41) (et B) (48)
= (tp—r—i(1 = T1—i1+2)) (B, @)
= j{m){l— (=B
(iJiea) (@, B) = (0141014x41) = j2(L = (=B) ).
For the coexistencaegion (« = B) extensive measurements were made. It appears that
the properties such as density, flux, etc, for both regions are equal to the properties in their
associated phases. It seems interesting to measure the correlations betwieerntisgdow-
density region and site+ x in the high-density region. However, due to the random nature

of the interface location, the occupation numbersand z;,, appear to be uncorrelated,
even ifx < 1/|Inq|.
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Figure 5. Density profiles in the coexistence region, time averaged over 4000 timesteps. At
time 71/t the interface is aR is 302/649, and the average number of parti¢lgs is 566/450
respectively.

5.3. Profile on coexistence line

In section 3 the profile and interface between low- and high-density ptease 8) has
been studied on the basis of purely dynamical considerations. A few additional results can
be obtained from particle—hole symmetry (7) and the constant flux relation (5).
On the transition linex = g, it follows from (8) that(r;) = 1 — (tr;_;.1). The density
in the middle of the lattice is therefore on aver@eThe average number of particley’)
on the lattice follows by summing the above relation over all sites, and yields

L

(N)=) (u:)=3L. (49)
i=1
The flux j = «/(1+ @), which is continuous across the transition line (see section 3.1),
allows us to calculate the boundary values exactly

() =a/(1+a) () =1/1+a)

(ut2) =0 (oror_1) = 0. (50)

There are two coexisting phases, downstream of the interface the low-density phase with
or = o/(1+ o) and upstream the high-density phase with= 1/(1 + «), separated by

an interface located ak. This interface hops around over the whole lattice, where two
instantaneous profiles (at andz,) are shown in figure 5 fow = g8 = 0.50.

5.4. Travel times

This section studies the travel time of the particles, which is by definition the number of
timesteps that have passed from the moment a particle enters the lattice until it leaves the
lattice. Because particles cannot travel with a speed larger than unity, the actual travel time
will always be larger than or equal to the size of the latfite= L. For the average travel

time, the following definition is used:

L
(T) = (n)/j = (N)/j (51)
i=1

l
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where(N) denotes the average number of particles on the lattice. The resulting expression
implies that the flux is equal to the average (unknown) number of partisl¢slivided by
the average travel timér).

The present sections will give analytical and simulation results for travel times in low-
and high-density phases, as well as travel times in the coexistence region.ldwitiensity
phaseof a large systeniL — oo), the speed in the bulk equals unity. Therefore we expect
the average travel time to be approximately equal to the size of the laffitey L. It can
be calculated directly from (51) and the density profile in (29) and yields in the low-density
phase(a < B),

L
(T) =L + 1=5 [1_ <Z) ]
B—a p
1
=L+ — (L — 0). (52)

B—a
We observe that, fax and g not to close to one another, the travel times are of the order of
L, as expected. Moreover, the average travel tiffigis a function of both parametess
andB. As«a t B, the neglected correction ternis/g)" in (52) and (29) become aP(1),
and (52) is no longer valid.

For a large range of combinations af and 8, the average travel times have been
measured with the simulation program, which is able to measure the travel times of a
variable set of individual (labelled) particles. The measured travel times are in excellent
agreement with relation (52), even very close to the transition(tine- 8). In figure 6@)
we show a histogram of travel times in a system witk= 1000,«¢ = 0.50, 8 = 0.51 in the
low-density phase near the transition lime= 8, where travel times may vary considerably.
The average travel time for the specific measurement was 1049 timesteps. Expression (52)
gives(T') = 1049, so the agreement is very good.

In the high-density phaséa > B) the average travel time should be approximately
L/B, because the speed in the bulk of the system is equaj te 8. The average travel
time (T') can again be determined from definition (51) and (35) with the result

L 1—-«

TY = = —
(T) 5 a—p

For« = 1 the average travel time assumes the vdlyg. Fora < 1, the average travel

time is smaller than./8, because then the particles travel with a velocity larger than

just after entering the lattice. Comparison with the results of the low-density phase also
show that the statistical spread in travel times is larger in the high-density phase, because
the particles are often blocked by other particles. Figul® 8hows a histogram of the
measured travel times for a lattice 6f = 1000 sites, and injection and removal rates of

a = 0.51 andpg = 0.50 respectively with a predicted averag® = 1951. Obviously there

is a large spread around the average travel time (52). The distribution is not symmetric and
therefore not a Gaussian. The asymmetry of the distributions in figuedsaé@ p) are

related through particle—hole symmetry.

The average travel timéT') on the transition linex = 8 can be easily determined,
using the average number of particles in (51). The travel time combined with the flux
Jj =a/(1+ «) then yields

(T):(N)/j:%L <1+E>. (54)
o

This equation merely shows that in the coexistence region, the average travel time is just
the average of the low- and high-density travel times, because both phases are present and

(L — 0). (53)
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Figure 6. (a) Histogram of travel times for a system &f = 1000 in the low-density phase
with {& = 0.50; 8 = 0.51} and @) in the high-density phase witfw = 0.51; g = 0.50}.

occupy on average an equal fraction of the system. The long-time avEfagarees very
well with (54). Individual particles will have a considerably shorter travel time of ofder
whenR is located near the exit site, and a longer one of oider when R is located near
the entrance site.

The prediction (54) is in excellent agreement with the simulation results, as shown in
figure 7. We also note that the theoretical description of our totally asymmetric exclusion
process in terms of occupation numbers (indistinguishable particles) does not allow us
to calculate travel times of labelled particles, or calculate the probability distributions in
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Figure 7. Average travel timgT) as a function ofx = B8 for coexisting phases in a system
with L = 1000 sites.

figure 6. Such calculations would only be possible in a TASEP with labelled particles, as
considered in [17, 19].

6. TASEP on a ring with blockage site

The fully synchronous TASEP of section 2.1 as a closed systemNvith p L particles and
obeying periodic boundary conditions is a fully deterministic, rather uninteresting system
in its NESS. Forp < % all sites are in pure free-flow configurations and particles travel,
say, counterclockwise with unit speed and flix= p. Forp > % all sites are in jammed
configurations, and holes are travelling clockwise with unit speed, and thg fiut — p.

The dynamics becomes more interesting by inserting a stochastic blockagei at dite

with a transmission rat@ < 1. The microdynamic equation for sités=2,3,..., L — 1
is the same as in (1), (2), but the fluxes referring to the blockage sites are
Jo=jL=PrLos (55)

where the Boolean variablg@ with expectation(8) = g, is defined in a similar manner
asa and 8 below (2). Forg = 1 one recovers the fully deterministic case with periodic
boundary conditions.
First we observe that the dynamicdiaed g is invariant under the duality transformation
T <> 0L—i+1

56
polp (56)

and that the average occupation satisfies
(Ti)(p, B) = (oL-i+1) (1 — p, B). (57)

A mean-field theory for the bulk properties of this model in the thermodynamic limit has
already been given by Yukawet al [21], as well as extensive numerical simulations,
specially for the coexisting phase region. However, the correlation functions and density
profiles have not yet been studied analytically. In the appendix we have discussed the TASEP



5054 L G Tilstra ard M H Ernst

with open boundaries and sublattice—parallel updating. The corresponding models on a
ring with a single blockage site and sublattice—parallel updating or with random sequential
updating have also been solved exactly in [14-18]. However, the analytic results show little
similarity with those for the present model, and will not be discussed further.

The build-up of dynamic correlations and structures may be analysed in a similar way
as in section 3 for open systems, and one recovers €kBgptfor sitei = L. This implies
that a cluster of holes upstream of a particle cluster can only be created at the blockage
site. Of course, hole clusters upstream of particle clusters may be present in the initial state
anywhere on the lattice. In the low-density phase, such configurations will be destroyed in
a time that is roughly equal to twice the size of the largest hole cluster. Moreover, from a
detailed analysis of the dynamics, similar to section 3.1, one can derive exact relations for
the microscopic dynamic correlations for the bulk of the low-density phase, such as

TiTiyl = 0 (bulkSiteSi <K L —Ap)

58
.11 =0 (blockage sitg (58)

wherelp is the width of the pile-up region, downstream of the blockage.
The continuity equation (1) and (55) yields then in combination with (58) for the low-
density phase in the NESS,

J=Bt) =(t) =(r2) = = (1) (i < L—Axp)
={(1;) — (TiTiq1) (L—xp Si<L). (59)

In the low-density phase there is an excess density in the pile-up region. Consequently, as the
total densityp = N/L is fixed, the density at bulk sites has the fofrg) ~ p{1-O((/L)},
as we shall see later.
In fact, one can infer most of the results for the ring model with a blockage from

section 4, by considering the flyx= g(z;) across the linkL, 1) as the influxj, appearing
in (5) for the open system. This relation defines the effective input ¢atéhrough the
relation j = (1 — (1)) and yields in combination with = (1) in (59),

a. = j/(1—J) (60)
wherea, approaches/(1— p) in the thermodynamic limit. The flux across the litk, 1)
can equally be considered as the outflyjx) = B.(z.) in (5) of the corresponding open
system. This identifies the effective removal rgte= g as the transmission coefficient of
the blockage sitd..

The phase diagram for the system with a blockage can then be read off from figure 3,

showing the fluxj(p) of the open system at a fixed removal rgte Consequently, for
o, < Be, or equivalently forj < /(1 + B8) (wherej ~ p for large systems), the system
is in the low-density or free-flow phase. If the densityapproachesr = /(1 + 8), or
if o, approacheg, then the system enters the region of coexisting phases, and the pile-
up region, which had before a microscopic width of approximate size AIn(B,/a.) =
1/In[B( — p)/p], grows to macroscopic size, as in a wetting transition. For pr an
interface appears downstream of the blockage, at a loc&jcend the pile-up region has
the macroscopic sizé — R. As the densityp increases further tp;, = 1/(1 + B), the
location R moves further downstream, according to (see (21))

_(R\ B R\ 1
p = <Z> m'i‘ (1—Z> m (IOF <p <:OJ)~ (61)

As o 1 py, the free-flow phase disappeafB — 0), and the system goes into a pure
jammed phase, where there is again a microscopic boundary layer, just upstream of the
blockage with a deficit density.
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In summary, the TASEP on a ring with a blockage site has the following phases,

—free-flow phasep < pr = B8/(1+ B)

—coexisting phasesor < p < py

—jammed phasep > p; = 1/(1+ ).

The above results were first obtained and verified against computer simulations by
Yukawaet al [21].

The density profile(z;) in the free-flow phase can be inferred from the corresponding
profile (29) fora,. < B., and yields,

<ri>=j{1+ﬂ:“} (i <L)

B (62)
<1 >=j/B
where terms of0(¢ %) have been neglected. The relation above is valid for
e J .
=—=—""<1 or < PF. 63
‘=h T BA-) = er (63)

In fact, the first line in (62) also covers the case L. The relation between flux(p) = (1)
and densityp in the free-flow phase follows by summing (62),

1 & . 1(1—/3)(1—1')}
== D=l S 64
p=17 2 J{ AN AT ST 9

i=1
whereO(¢%)-terms have been neglected. The fligpo) can be solved from this quadratic
equation, where the root with the minus sign is the physical root. For large sygtdifiisrs
only slightly from p. However, the®(1/L)-correction becomes more and more important
asj 1 pr = B/(1+B) where the denominator in (64) diverges. By a perturbation expansion

to O(1/L) we find,
1-—
p[l—( p)e} (p < prF)
PF — P

jp) = 1 (65)
w[i-(2)] wreneh
P — PF
with
_(-A\1_ M
=(155)1= 17 ©0

whereAp = p; — pr is the difference in density between the two coexisting phases. The
numerical solution of (64) is plotted in figure 8 as the solid line.

We have again performed computer simulations on large and small systems to test
the density dependence of the flyixp). After preparing the system in a random initial
configuration, we let the system relax for-410* timestep, after which it is assumed to
be in the NESS. We have calculated time averages oved @ timesteps, and ensemble
averages over 50 different initializations. The agreement in the interval o between
theory and simulations is excellent, even for snialand 8, and for p close topr where
the difference betweep andp is largest, as shown in table 1 and figure 8. ppr< p < %
the difference between theory and simulations becomes somewhat larger. The reason is that
equations (62)—(64) are only valid fgr< 1 or j < pr. As soon a¥ ~ 1 or j >~ pp
equation (64) starts to lose its validity because in (62) and (64) ternd3(of) ~ O(1)
have been neglected. Simulation results fgp), similar to those in figure 8, have been
presented in [21] without a theoretical explanation.
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Figure 8. ‘Equation of state’ for the fluxi (p) from (64) and (65) (full curve) compared with
simulation results fol. = 1000 sites apg = 0.2 (pr ~ 0.17) and8 = 0.5 (pr =~ 0.33). The
smooth crossover at = pr is derived from the profile (62) of the blockage region.

Table 1. Equation of statg (o, B).

N o j(sim) Jj (theon
L=100 =025 pp=2¢
10 0.10 0.0955 0.0958
15 0,15 0.1401 0.1384
18 0.18 0.1638 0.1599

L=100 p=05 pp=3
20 0.2 0.1964 0.1962
30 03 0.2882 0.2857

L=1000 B=05 ppr=3
300 0.30 0.2981 0.2980
330 0.33 0.3243 0.3230

L=100 B=075 pp=3
30 0.30 0.2971 0.2977
40  0.40 0.3914 0.3910

L=1000 B=01 pp=4=
60  0.60 0.0587  0.0586
85 0.85 0.0806  0.0797

Next we consider the-point correlations, which are given through (28) and (16), i.e.

(TeThst - - Tewn) = G/B)(A = B¢ EF (67)

with ¢ given in (63). This relation also gives the profile.) = j+ (txtv41) of the pile-up
region downstream of the blockage. In figure 9 thpoint correlations withh = 1, 2 have
been compared with computer simulations and again there is good agreement.

Moreover, through arguments similar to those in section 5.1, we conclude that the
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Figure 9. Correlation functionsz;z;+1) and (z;7;+174+2) as a function ofi. The points are
simulation results; the curve represents the relation (67), with parameterd00Q g = 0.5
andp =0.3.

probability P (k) to find the first site of the pile up region at siteis proportional to the
excess densityr, t,11), SO thatP (k) = ¢L7%/(1—¢). The average width of the blockage
region and the fluctuatiodiz around this average are then found from (32) and (33) with
¢ given through (63), i.e.

g =(L—hk)=j/[B—jd+p)]

68
Grp)?= (L -k —(L-k?*=Bj1-)H/[B—jd+PB)? (68)

where (---) = >, (...)P(k). Simulation results fong and§rz have been presented in
[21].

For thehigh-densityphase all corresponding results can be obtained from particle—hole
symmetry. For instance, the profile of the depletion region just upstream of the blockage
site L is given by (29) witha, = g andg8, = j/(1— j) wherej(p, B) in the jammed phase
equalsj (1 — p, B) in (64) in the free-flow phase.

The behaviour of the interface in titeexistenceegion is very different from that in the
TASEP withopenboundaries. In the latter the average number of partigi@sfluctuates
wildly, and the locationR of the interface for a given = 8, can be anywhere on the lattice
with equal probability, as the actual density fluctuates betwe&d + g) and /(1 + B).

In the TASEP on the ring with blockage the density= N/L is fixed, andR is on average

given through (61), and there are only small fluctuatidRsaround the averagk. We have

no estimate for the average position and width of the interface between coexisting phases.
However, away from coexistence, the profiles of boundary layers in both systems are rather
similar. The previous discussion confirms our intuitive interpretation that the TASEP on
a ring with a blockage behaves essentially the same as the TASEP with open boundaries
with injection ratex, = j/(1— j) and removal ratg, = 8. This similarity holds for bulk
properties, profiles and correlation functions.
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7. Conclusion

In this paper, which is in part an account of [22], we have studied the NESS of the TASEP
with fully synchronous andieterministic(p = 1) bulk dynamics (i) for open systems,
coupled to particle reservoirs with injection rateand removal ratg8, and (ii) for closed
systems on a ring containing a stochastic blockage site with transmissiop.rd#ean-

field theories and the Boltzmann equation give a totally inadequate description of these
far-from-equilibrium states, because of the existence of strong short-range correlations.

As discussed in the introduction, there are many physical processes that can be modelled
as TASEPs, such as traffic models. It has been shown in [7] that simple extensions of the
present TASEP to stochastic bulk dynamics, to multispeeds, to multilanes, etc—which do
not seem to change the basic physics of the model—are able to model realistic traffic flows.
Consequently, if traffic systems are operated under NESS conditions with input and output
rates close to the jamming transition (here- 8), then the wild fluctuations in the positions
of the tails of large traffic jams (position of the interface or shock wave in Burgers’ equation)
are intrinsic and physically unavoidable.

Itis also of interest to present a more technical comparison of our new method and results
with existing ones. The theory presented here is based on two new ideas: (i) starting from
the microdynamic equations for the TASEP, we derive the explicit microscopic specifications
of the configurations and order parameters for the separate phases; and (ii) we introduce an
improved MFA in (25) that neglects fourth- and higher-order correlation functions at the
interface between the bulk phase and the boundary layers. The results for the profiles have
been compared with extensive computer simulations, and turn out to be indistinguishable
from the analytic results. We therefotenjecturethat our results for the open TASEP with
a # B areexactup to terms that are exponentially small in the system &izéor instance
of order (a/B)" for « < 8. Our results for the TASEP on the ring with a blockage show
small differences between theory and simulations. Clearly the identification of the flux
through a blockage as both the influx (to defing and the outflux (to defines,) of the
open system is only approximate. Moreover, the neglected correction ey~ start to
become ofO(1) asa, 1 B, or j 1 pr (see figure 8).

The first idea has enabled us to obtain exact results not only for bulk densities and
currents, but also new results for the spatial and temporal correlation functions. The second
idea has enabled us to obtain analytic results for the profiles in the boundary layers of
density (t;) and cluster correlation functions;t;,1...). For the more general stochastic
model withp < 1 of [8] no analytic results for profiles and correlation functions are known.
The ideas in (i) are akin to the elimination of the ‘Garden of Eden’ states in [8], and those
in (i) to the ‘paradisical MFA’, hinted at in [8], but that lingo is not ours.

It is of interest to compare our results for fluxes and bulk densities with known results.
The phase diagram has been obtained before in [11, 13] for the same TASEP with sublattice—
parallel updating, and in [21] for the fully synchronous TASEP on a ring with a blockage.

It has a free-flow phaséx < g), and a congested phase > B), which coexist when
o= p.

In [8] a more generaktochasticTASEP with fully synchronous dynamics has been
analysed, where particles hop only with probability(with p < 1). The corresponding
phase diagram contains the presépt = 1) phase diagram fowx and g less than
a. = 1—./T—=p), but it also contains more phases, such as the maximal current phase.
In our (p = 1)-model the maximal current phase occurs only akulk phase for the
special parameter values= g = 1. In addition, the interface of finite width, separating
the coexisting phases far = 8 < 1, constitutes a ‘microphase’ of maximal current
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configurations. In the TASEP with = 1 the interface region (see section 4.2) contains only
local configurations common to both the loand high-density phase. Thesemmonlocal
configurations are identical to the local configurations that constitute the maximal current
phase. It would be interesting to find out for the fully synchronous TASEP with1 if it
is possible to identify an interface region fer= 8 < «., which constitutes a ‘microphase
of maximal current configurations’ as well.

In the low-density regiméa < 8 < 1 — /1 — p) of [8] the flux and bulk density are
found as
P az and _od-o 02[)
p—« p—«
which reduce forp = 1 to the results in (16). The corresponding properties of the phase
diagram in the high-density regime can be obtained from particle—hole symmetry.

In order to illustrate the particle—hole attraction in these models, and its dependence on
the hopping ratep, we compare our results for the deterministic versipn= 1) for the
nearest-neighbour correlation functions in the bulk (fex L — i), i.e.

(69)

j=«

(titiy1) =0 (oi0i41) =1-2p (i € bulk)

. . (70)
(Tioit1) = (OiTiy1) =j=p (Vi)
with those for the stochastic versigp < 1) in [8], reading
(itiy1) =p —Jj/p (i €bulk)
(0ioiv1) =1—p—j/p (i € bulk) (71)

(Tioiy1) = (0iTit1) = j/p (Vi)
where relation (6) has been used. Of course (71) includes (7Q) ferl.
Note that in the low-density phase of the deterministic version there is a ‘hard core
repulsion’ for nearest-neighbour sites, @sr;;1) = 0 or equivalently, a strong attraction
of particle—hole pairs on nearest-neighbour sites. In the stochastic vésiarl) there is
also a particle—hole attraction on nearest-neighbour sites, because the covariance

?(p —)?
p(p —a?)
i.e. there exists a positive correlation between an occupied site and the empty site, just in
front of it, which increases monotonically ast 1.

It would be very valuable to extend this method, based on the ideas summarized in
(i) and (ii) at the start of this section, to calculate the profiles, and spatial and temporal
correlation functions in the stochastic TASEP of [8] with its much richer phase diagram
containing a maximal current phase.

(tioiy1) — (Ti){0it1) = >0 (72)
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Appendix. Sublattice—parallel dynamics

We will now illustrate how the method of this paper, when applied to the TASEP
with sublattice—parallel updating, yields the exact results for the bulk properties and the
asymptotic (large system) results for profiles and correlation functions, as obtained in
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[11, 13] The dynamics consists of two substeps. In the first step fresnt’ =t + % the
pairs(1, L), (23), ..., (L —2, L — 1) are updated in parallel wheteis even. There is only
a possibly nonvanishing microscopic flyx through theevenlink (i, i + 1), whereas the
flux j; through theodd link vanishes. In the second step, fram> 1" = t/+% =1r+1, the
pairs (1,2), (3,4),.., (L —1, L) are updated in parallel, thef,, is possibly nonvanishing
and j; vanishes.

If we denote 7,(¢), t,(t + %) and 7,(t + 1) respectively byr,, r, and z, with
a=1{1,2,...,L}, then themicrodynamicequation for the first step— ¢’ becomes:

T = 1T O<i<L;ieven

/ . . (A1)
Tiy1 = Tisl T Ti0i41 (0<i<L;ieven

and for the second step— 1+ 1

T =1 +1/_50] (] < i < L.; i even (A2)
T = TaTise 0<i<L;ieven.

With the conventions, = & ando, .1 = B, as defined below (2), these equations also
include the boundary conditions for the open system. Moreover, we observe that the
evolution equations (Al), (A2) are invariant under the particle—hole exchange.

In the NESS there is again a constant site-independent flux through the system. The
flux (i) out of evensites at integer times is equal to the flyx, ,) out of odd sites at
half-integer times, i.e.

j =) = (tioit1)
= (J/+1) = ((Ti41 + T0141) (042 + Ti420143)) (A3)

wheretq = @ ando;, = B andi is even

By studying the dynamics of clusters as in section 3 one finds that (A1) and (A2) impose
some very strong constraints on the allowed configurations, i.e.
(t0)/_y; = 1i_17/0{_10{ =0 (Ad)
(TT00)] 1440 =T/_17/0/ 10/ = {(TTT)i—1i41 + (10TT);_2i41}0,0i11Ti42Ti43 = 0.
This implies that configurations containir{g. .10, ...) and (...110Q, ...) can never be
created at integer times if one starts from an empty initial state. Such configurations
are thereforeabsentin the NESS forany value ofa and 8. The subscript§+) on 7.
indicate that the relevant site hasewen(+) or anodd (—) label. Of course configurations
(...10_...) as well as(...0011...) are allowed at integer times.

Moreover, by arguments similar to those in sections 3.1 and 3.2, one shows again that
the first particle cluster can only be created at the exit site. khdie the location of the
last particle on the last cluster of particles, then the interval downstreakg obntains
only isolated particles separated by holes (free-flow configurations with interval density
p(< ko) < %), and that upstream df, contains onlyisolated holegjammed configurations
with interval densityp(> ko) > %). All conclusions in the last three paragraphs of
section 3.1 carry over to the TASEP with sublattice—parallel dynamics, as does the phase
diagram.

Next, we consider the bulk properties for large systéms> oco) in the free-flow phase
(¢ < B and pr < %). The low-density phase is again characterized by the microscopic
order parameter;t; ;1 = 0. To perform these calculations, we start, as in section 4.1, from
the constant flux relations (A3) in combination with the vanishing order parameter,

J=0i)=() == (u) =)
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= (Jiy1) =a(l—(r1)) = (12 + 13)
= = (1 + T1) (A5)
valid fori « L —\g andi even. This implies foodd bulksites(z_) = 0, and foreven bulk
sites(r;) = a and(z.) = o/B. If (j,) denotes the flux out of even bulk sites, apd) the
one out of odd sites, then the results for the free-flow piase 8) can be summarized
as,
(t14) =« () =0 (L) =a/B
(j4) =« (j-)=0.
The corresponding relations for the jammed phése> B) can be obtained from the
relations (8) for particle—hole symmetry, and read
(Tl B) =1— (- )(B,a) =1
(T, p)=1—(t1)(B,a) =1—8 (A7)
(t)(e, B) =1—(7)(B, ) =1— B/
and for the fluxes, using (9),

(J+) (. B) = (j+)(B.a) = B
(J=)(@, B) =0.

Next, we consider the profile in the right boundary layer of kw-density phase, and
we construct the dynamics of the cluster functidhsas in (11). By specializing these
equations to the low-density phase one arrives after lengthy, but straightforward algebra, at
a coupled hierarchy of equations for the correlation functions.

Leti ori + 1 (with i = even) be the last particle position on the last particle cluster,
then we find in the NESS the exact relations,

(Tix) = (Tix-1) = (Tiks1) + {(tooT)i2441) +{(toTtoT)i_2441)
(Tiyak) = (Tivrk—1) = (Tizrar) + ((toT)ixy1)

wherei andk are botheven The present set of coupled equations is the analogue of (24).
By application of the mean-field assumption, formulated in (24) and (25), the above set of
equations simplifies to the set of recursion relations witmdk even,

(Tit) = (Tikra) + @(Trsrasn) + 0 (Tip2xs1)
(Ti1k) = (Tivrk+1) + o{Ti2k+1)-
The boundary condition for this set is included by setting L.
Our special mean-field assumption for tleev-density phase neglects again higher-
order correlations between on the one hand the particle—hole paiend oo, and on

the other hand the tailing particle cluster at the interface of bulk phase and boundary layer.
The solution of these recursion relations yields

(A6)

(A8)

(A9)

(A10)

(Tie) = (Tig_1) = %<n+1,k> = %<T,~+1,k+1>
o L—i+1 . )
= (E) (1— Bz, (A11)

From these results and from (6) we obtain the density profile of the boundary layer near
the exit forevensitesi,

o\
() =a+1-p8) (E) . (A12)
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For odd sitesi + 1 follows similarly,

L—i
(tivr) = 1= 5) (%) . (A13)

The results for the profiles and correlation functions (A11)—(A13) are in full agreement
with the exactresults of [11, 13] for large systems, when terms of orde!8)* have been
neglected.

In close parallel to section 5.2, we may also calculate the spatial and temporal correlation
functions in the bulk of the low-density phase. By setting the microscopic order parameter
7;7,41 = 0 in (A1), (A2), the microdynamic equation for bulk sités<« L — Ag) reduces
to

T(t+1) =1_2(t) Ti41(1) =0 (Al4)
wherei is even. The correlation function in the NESS witland R even are then,

(ti+r )T (0)) = (Ti+r—2:(0)7; (0))
= (T r(1)) (1)) = &? (A15)

holding for 0< {i, j} <« L —Ag with j =i 4+ R —t and R # 2¢t. Fori and/orR odd,

the correlation function vanish, g¢) = 0 for odd sites. We observe that the occupations
between two even sites in the low-density phase wareorrelated as a consequence of

the sublattice—paralleldynamics. In the corresponding case of fully parallel dynamics, the
occupations areorrelated as is shown in (44) and (46). The absence of correlation is
understandable here, as a particle, attempting to enter the system in the low-density phase
at site 1 is never blocked.
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